
Managing Language Resources and Tools using a Hierarchy of Annotation
Schemas

Dan Cristea

Faculty of Computer Science, University “Al. I. Cuza” of

Iaşi, Romania

Institute for Computer Science, Romanian Academy, Iaşi,

Romania

dcristea@info.uaic.ro

Ionut Cristian Pistol

Faculty of Computer Science, University “Al. I. Cuza” of

Iaşi, Romania

ipistol@info.uaic.ro

Abstract

This paper describes the concept and usage of ALPE (Automated Linguistic Processing Environment) a system designed to facilitate
the management and deployment of large and dynamic collections of linguistic resources and tools. ALPE can build linguistic
processing chains involving the annotation formats and the tools integrated into a hierarchical structure. The particularities and
advantages of integrating ALPE in a project involving the development and usage of multiple linguistic resources are the main topics
of this paper.

1. Introduction

Making sure that corpora, resources and tools are reusable
in different contexts than that of the originating project is
one of the recent main topics of interest in the Natural
Language Processing community. Re-using a resource
initially developed for a specific project usually fails for
one of two reasons: either the resource is not enough
documented (the format is not known to the re-user), or
the resource is not directly accessible (the location of the
resource is not known to the re-user). Making sure a
project’s results are well organized and accessible ensures
a better impact and a longer lasting significance, as more
people will be able to use the developed resources and
tools.
One of the latest developments in NLP, and one which
promises to have a significant impact for future linguistic
processing systems, is the emerging of linguistic
annotation meta-systems, which make use of existing
processing tools and implement some sort of processing
architecture, pipelined or otherwise.
In this paper we describe ALPE, a system offering a new
perspective to the task of exploiting NLP meta-systems,
by helping a community of users to have an integrated
look at a whole range of tools that are able to
communicate on the basis of common formats.
For annotated linguistic resources several standardization
efforts have been made, such as XCES 1 and TEI 2 .
However, the proposed standardizations are not
universally accepted, most research projects developing
resources according to their own described formats. More
recent developments, such as GOLD3, propose unification
methods for the various annotation formats. Due to such
methods one can easily transform the name space of a
corpus in order to make it compatible to her/his own
targets. Several systems tried to facilitate the access to
existing processing tools and to ease their usage. The
more prominent ones are GATE 4 and UIMA 5 . Both
systems make easier the access to a set of independently
developed NLP tools which are already parts of an

1 www.xml-ces.org/
2 www.tei-c.org/
3 http://www.linguistics-ontology.org/gold.html
4 http://www.gate.ac.uk/
5 www.research.ibm.com/UIMA/

environment offering means to create and use processing
chains intended to add linguistic metadata to an input
corpus. GATE (Cunningham et al., 2002, Cunningham et
al., 2003) is a versatile environment for building and
deploying NLP software and resources, allowing for the
integration of a large amount of built-ins in new
processing pipelines that receive as input a single
document or corpus. UIMA (Ferrucci and Lally, 2004)
offers the same general functionalities as GATE, but once
a processing module is integrated in UIMA it can be used
in any further chains without any modifications (GATE
requires wrappers to be written to allow two new modules
to be connected in a chain). Since the appearance of
UIMA, the GATE developers have made available a
module that allows GATE and UIMA processing modules
to be interchangeable, basically merging the “pool” of
modules available.
ALPE, a new NLP meta-system still in development,
allows a user, even with very limited programming
capabilities, to automatically exploit already walked-on
processing paths or to configure new ones on-the-spot, by
exploiting the annotation schemas at intermediate steps.
ALPE is based on the hierarchy of annotation schemas
described in (Cristea and Butnariu, 2004). In this model,
XML annotation schemas are nodes in a directed acyclic
graph, and the hierarchical links are subsumption
relations between schemas. In (Cristea et al., 2006) is
described how the graph may be augmented with
processing power by marking edges linking parent nodes
to daughter nodes with processors, each realising an
elementary NLP step.
Section two of this paper presents the theory behind the
ALPE system, and section three describes the significant
features of ALPE, relevant in the context of a large scale
research project, employing multiple layers of annotation
schemas and various tools. Section four makes a brief
comparison between ALPE and the two most prominent
NLP meta-systems (GATE and UIMA). The conclusions,
as well as the further planned developments are described
in section five.

2. The Underlying Model

2.1 Linguistic Metadata Organised in a Hierarchy
We base our model on the direct acyclic graph (DAG)
described in (Cristea and Butnariu, 2002), which

configures the metadata of linguistic annotation in a
hierarchy of XML schemas. Nodes of the graph are
distinct XML annotation schemas, while edges are
hierarchical relations between schemas. By interacting
with the graph, a user can modify it from an initial trivial
shape, which includes just one empty annotation schema,
up to a huge graph accommodating a diversity of
annotation and processing needs. If there is an oriented
edge linking a node A with a node B in the hierarchy (we
will say also that A subsumes B or that B is a descendant
of A) then the following conditions hold simultaneously:

• any tag-name of A is also in B;
• any attribute in the list of attributes of a tag-name

in A is also in the list of attributes of the same
tag-name of B.

As such, a hierarchical relation between a node A and one
descendant B describes B as an annotation schema which
is more informative than A. In general, either B has at
least one tag-name which is not in A, and/or there is at
least one tag-name in B such that at least one attribute in
its list of attributes is not in the list of attributes of the
homonymous tag-name in A. We will agree to use the
term path in this DAG with its meaning from the support
graph, i.e. a path between the nodes A and B in the graph
is the sequence of adjacent edges, irrespective of their
orientation, which links nodes A and B. As we will see
later, the way this graph is being built triggers its property
of being connected. This means that, if edges are seen
undirected, there is always at least one path linking any
two nodes.

2.2 The Hierarchy Augmented with Processing Power
In NLP, the needs for reusability of modules and the
language and application independence impose the reuse
of specific modules in configurable architectures. In order
for the modules to be interconnectable, their inputs and
outputs must observe the constraints expressed as XML
schemas.
When processes are placed on the edges of the graph of
linguistic metadata, the hierarchy of annotation schemas
becomes a graph of interconnecting modules. More
precisely, if a node A is placed above a node B in the
hierarchy, there should be a process which takes as input a
file observing the restrictions imposed by the schema A
and produces as output a file observing the restrictions
imposed by the schema B.
In (Cristea et al., 2006) a graph (or hierarchy) of
annotation schemas on which processing modules have
been marked on edges is called augmented with
processing power (or simply, augmented). The null
process, marked Ø, is a module that leaves an input file
unmodified.

2.3 Building the Hierarchy
Three hierarchy building operations are introduced in
(Cristea et al., 2006): initialize-graph, classify-file and
integrate-process. In this section we briefly present them.
The initialize-hierarchy operation receives no input and
outputs a trivial hierarchy formed by a ROOT node
(representing the empty annotation schema). Once the
graph is initialised, its nodes and edges are contributed by
classifying documents in the hierarchy or manually.
The classify-file operation takes an existing hierarchy and
a document marked with an XML metadata and classifies
the schema of the document within the hierarchy. The

operation results in a (possibly) updated hierarchy and the
location of the input schema as a node of the hierarchy. If
the input document fully complies with a schema
described by a node of the hierarchy, the latter remains
unchanged and the output indicates this found node;
otherwise a new node, corresponding to the annotation
schema of the input document, is inserted in the proper
place within the hierarchy.
Integrate-process is an operation aiming to properly
attach processes to the edges of a hierarchy of annotation
schemas, mainly by labelling edges with processors, but
also by adding nodes and edges and labelling the
connecting edges.
Apart from these basic operations that allow building a
hierarchy from scratch or modifying an existing one by
exploiting the annotation incorporated in files, a graphical
interface allows the user to also define new nodes
manually, which ALPE will place at proper places in the
hierarchy automatically. But building a hierarchy can be
made independent of any explicit interaction with the
system by a user. It is still not unusual that an interaction
results also in an augmentation of an existing hierarchy
with nodes, corresponding to user’s input and/or output
file. Through multiple interactions, an initial minimal
hierarchy which is accessed by a community of users can
thus be developed.

2.4 Operations on the Augmented Graph
Three main operations can be supported by the Cristea et
al. (Cristea et al., 2006) model.
If an edge linking a node A to a node B (therefore B being
a descendant of A) is marked with a process p, it is said
that A pipelines to B by p. Equally, when a file
corresponding to the schema A is pipelined to B by p, it
will be transformed by the process p onto a file that
corresponds to the restrictions imposed by the schema B.
This arises in augmenting the annotation of the input file
(observing the restrictions of the schema A) with new
information, as described by schema B.
For any two nodes A and B of the graph, such that B is a
descendant of A, it is said that B can be simplified to A.
When a file corresponding to the schema B is simplified to
A, it will lose all annotations except those imposed by the
schema A. Practically, a simplification is the opposite of a
(series of) pipeline(s) operation(s).
The merge operation can be defined in nodes pointed by
more than one edge on the hierarchical graph. It is not
unusual that the edges pointing to the same node are
labelled by empty processors. The merge operation
applied to files corresponding to parent nodes combines
the different annotations contributed by these nodes onto
one single file corresponding to the schema of the
emerging node.
With these operations, the graph augmented with
processing power is useful in two ways: for goal-driven,
dynamic configuration of processing architectures and for
transforming metadata attached to documents. Automatic
configuration of a processing architecture is a result of a
navigation process within the augmented graph between a
start node and a destination node, the resulted processes
being combinations of branching pipelines (serial
simplifications, processing and merges). In terms of
processing, the difference with respect to GATE and
UIMA, both allowing only pipeline processing in which
the whole output of the preceding processor is given as

input to the next processor, is that in the described model
the required processing may result in a combination of
branching pipelines. This is due to the introduction of the
merge operation which is able to combine two different
annotations on the same file. Once the process is
computed, then it can be applied on an input file
displaying a certain metadata in order to produce an
output file with the metadata changed as intended. These
two files comply with the restrictions encoded by the start
node and, respectively, the destination node of the
hierarchy.
Since the graph is connected, there should always be at
least one path connecting these two nodes. The paths
found are made up of oriented edges and, depending on
whether the orientation of the edges is the same as that of
the path or not, we will have pipeline operations or
simplification operations. A flow is a combination of
paths between the start and the destination node that
configures the processing which transforms any file
observing the specifications of the start node (schema)
onto a file observing the specifications of the destination
node (schema).

Once the entry and exit points in the hierarchy have been
determined and processing flows (combination of paths in
the graph) have been devised, all the rest is done by the
hierarchy augmented with the processing power in the
manner described above. This way, the processing needed
to arrive from the input to the output is computed by the
hierarchy as sequences of serial and parallel processing
steps, each of them supported in the hierarchy by means
of specialized modules. Then the process itself is
launched on the input file.

2.5 ALPE

ALPE is a system implementing the described model.
Besides implementing all the previously described
features, ALPE brings several additions.

The core modules
ALPE includes 11 core modules, used in any ALPE
hierarchy (the hierarchy augmented with processing
power, as described) but not attached to any edge. These
core modules perform built-in tasks such as language

base

tok

par seg

lemma

morpho

pos

sin

chunks

form

wsd

full

Figure 1: The ALPE core hierarchy

identification, but also implement the basic operations in
the hierarchy (among others, flow computation, merging
and simplifying). These core modules are used in any
ALPE hierarchy and are not replaceable by user tools.
They ensure that any ALPE hierarchy implements the
basic behaviour, as described in this paper.

The core hierarchy
One of the main problems in developing a new NLP
system is selecting a relevant and useful annotation
format for the developed resources. Establishing a
hierarchy of generally used XML metadata is not one of
ALPE’s main purposes, but having most annotated
documents adhere to some common format brings
obvious benefits both to the developer of new NLP
software and to the user who would have an easier time
finding the tools required for a particular annotation task.
As base for any new ALPE hierarchy is offered a core
hierarchy, with 12 annotation schemas ranging from basic
XML format to a full XCES (Ide et al., 2000) linguistic
annotation specification6. The intermediate formats are
designed to conform to specific requirements for
document annotation, such as tokenization, POS-tagging,
NP-chunking, etc. as well as combination of these
markings. Figure 1 shows the ALPE core hierarchy. All
nodes are subsets of the XCES standard for annotated data,
and the subsumption relation is observed between all pairs
of nodes linked through an edge.
The 12 nodes in figure 1 correspond to XML annotation
schemas as follows:

• base: subset of XCESAna including just cesAna
tags – corresponding to a basic XML format;

• par: adds the par tag to the parent node –
corresponding to an XML with marked
paragraphs;

• seg: adds the s tag to the parent node –
corresponding to an XML with marked
sentences;

• form: a merge of the subsuming formats –
corresponding to an XML with marked
formatting (paragraphs and sentences)
information;

• tok: adds the tok and orth tags to the parent node
– corresponding to a tokenized text;

• pos: adds the ctag tag to the parent node –
corresponding to a pos-tagged text;

• lemma: adds the base tag to the parent node –
corresponding to a lemmatized text;

• chunks: adds the chunk and chunklist tags to the
parent node – corresponding to a (Noun/Verb)
phrase-chunked text;

• morpho: adds the msd tag to the parent node –
corresponding to an XML displaying
morphological metadata;

• wsd: adds a wsd tag for semantic
disambiguation;

• sin: merges the parent nodes – corresponding to
an XML displaying full syntactic information;

• full: merges all parent nodes.
The purpose of the core hierarchy is to offer both a
starting point to any new hierarchy as well as anchors for
any new linguistic annotation formats that a user would
like to include. When the XML formats of the user’s input

6 http://www.cs.vassar.edu/XCES/dtd/xcesAna.dtd

and output files are not identical with schemas belonging
to the hierarchy (for instance, due to differences in the
tags name space or to configurations of attributes that
convey in different ways the same information) then the
user has to provide convertors (wrappers) able to
accommodate his notations with those corresponding to
nodes of the hierarchy.

The user’s needs and the selection of flows

The ALPE augmented hierarchy can be used in many
ways. Suppose a user wants to process an XML file from
one input format to some output format. In principle, any
such processing task involves a transformation by some
module capable to receive the input format and to output
the required final format. The ALPE philosophy details
such a processing task in relation with the pair of
input-output schemas by establishing the way these
schemas interrelate from the point of view of the
subsumption relation. Two cases can be evidenced: either
the two schemas do observe a subsumption relation or not.
When they do, then the node corresponding to the input
file can be connected through a direct descending or
ascending edge to the one corresponding to the output file.
It will be descending if the output schema results from the
input schema through some adds, and it will be ascending
if in order to obtain the output, simplification applied to
the input are required. When the two schemas are not in a
subsumption relation, then there should be a node such
that either both are subsumed by it, or both subsume it.
ALPE comes with a core hierarchy whose nodes act as a
grid of fixed bench-marks with respect to which the
locations of the input and output schemas are set out.
When the pair of users’ schemas matches two nodes of the
core hierarchy, then processing can be drawn in terms of
known (built-in) interconnected modules. When a match
(modulo, as noticed above, the XML elements name space
and/or differences in configurations of attributes still
conveying the same information) of one or even both of
user’s schemas against nodes of the hierarchy is not
possible, then the non-matching schemas should be seen
as new nodes of the hierarchy. In this case it is the user’s
responsibility to locate also the processes which will be
assigned to the new edges which will interconnect the
new nodes onto the hierarchy.
ALPE designs a solution to the user’s problem by first
computing all possible chains of edges which link the
input schema to the output schema and, if needed,
executing them.
Each computed flow is characterized by a set of features.
These features include properties such as: flow length
(defined as number of processing steps involved), cost
(for instance, if processing involving one or more
modules presupposes financial costs), the estimated
precision of execution, and the estimated time of
execution. The user can then select and run the flow most
suitable to his needs.

3. Features

In this section we will describe a set of features
implemented in ALPE often wished for in environments
working with linguistic resources and tools. We will see
how these features emerge from the model described
above. Many of these features are key elements of the

future European linguistic infrastructure, as seen by
CLARIN7.

Multilinguality
In modern NLP, algorithms are separated from linguistic
details. This way, a module designed to perform a specific
task can be put to work on any language if fuelled with
appropriate language resources. This is the case, for
instance, with POS-taggers (see, for instance, TNT
(Brants, 2000)), which are powered by specific language
models (frequency of n-grams of POS tags). A syntactic
parser should be powered by the grammar of a language to
be effective in parsing sentences of that language. A
shallow parser, which usually implements an abstract
automata machinery, could recognize noun phases of one
language if powered by a resource consisting of a set of
regular expressions specific to that language.
To implement multilinguality within the proposed model
means to map the edges of the augmented graph on a
collection of repositories of configuring resources
(language models, sets of grammar rules, regular
expressions, etc.) which are specific to different
languages. This can be achieved if the edges of the graph
labelled with processes are indexed with indices
corresponding to languages. This way, to each particular

7 http://www.clarin.eu

language an instance of the graph can be generated, in
which all edges keep one and the same index – the one
corresponding to that particular language. This means that
all processors of that particular language should access
the configuring resources specific to that language in
order for the hierarchy to work properly. For instance, in
the graph instance of language Lx, the edge corresponding
to a POS-tagger has as index Lx, meaning that it accesses
a configuring resource file that is specific to language Lx
(that language model).
It is a fact that different languages have different sets of
processing tools developed, English being perhaps the
richer, presently. Ideally, the blame for the lack of a tool in
a specific language should be put on the lack of the
corresponding configuring resource, once a language
independent processing module is available for that task.
It is also the case that differences exist in processing
chains among languages. For instance one language could
have a combined POS-tagger and lemmatizer while
another one realizes these operations independently,
pipelining a POS-tagger with a lemmatization module.
These differences are reflected in particular instances of
sections of the graph, which, although reproduce the same
set of nodes, do not allow but for certain edges linking
them. The missing edges inhibit pipelining operations

Figure 2: Computation of different flows for specific languages

tok

 POS lemma

POS+lemma

L1

POS tagger
(L1)

Lemmatizer
(L1)

Ø Ø

tok

lemma

POS+lemma

L2

Lemmatizer
(L2)

POS tagger
(L2)

tok

L3

POS+lemma

POS tagger+lemmatizer
(L3)

POS tagger
(L2)

Lemmatizer
(L1 + L2)

POS tagger
(L1)

tok

 POS

Tagger
(L3)

 lemma

POS+lemma

Ø

L1+L2+L3

along them, but are suited for simplification operations.
In figure 2 is given a simple example of how ALPE
handles multiple languages integrated in the same
hierarchy. The first hierarchy (marked as L1+L2+L3 in
the figure) has four nodes (annotation schemas):

• tok: XML which marks lexical tokens;
• POS: XML marking tokens and their

part-of-speech;
• lemma: XML marking tokens and their lemmas;
• POS+lemma: XML with tokens, POS and

lemma information.
These four nodes correspond to simple processing stages
for linguistically annotated documents. The ALPE
hierarchy fragment representation (shown on the
L1+L2+L3 section of Figure 2) indicates the subsuming
relations between the respective nodes and the attached
tools. For each tool, in parenthesis, it is indicated the
languages for which the tool is available. In the sections
marked L1, L2 and L3, respectively, of Figure 2 are
sketched the corresponding instantiations of this
sub-hierarchy for the three languages.
The user can provide an input document (XML with
marked lexical tokens) and specify the required output
format as being the final node (suppose POS+lemma).
ALPE determines the language of the input document (as
being L1, L2 or L3). If the input document belongs to the
language L1, the computed flow will include only tools
available for that language. Thus the only possible flow
will use the POS tagger and the Lemmatizer tools, then
merge their results into the output format. For the second
language the flow will use a different POS tagger tool,
one that requires as input a file corresponding to the
lemma node. So the computed flow will run first the
Lemmatizer, then the POS tagger on the result. For the
third language, a tool is available that can directly
annotate an input file in the tok format up to the required
output.
We can look at the ALPE hierarchy as having three layers,
one for each language. The three language specific
hierarchies can look completely different for each
language, but are still able to compute and run the same
flows as the combining hierarchy. The three layers are
aligned by nodes which display the same XML structure.

Manual versus automatic annotation
We have seen how automatic annotation is supported by
the augmented graph. But how can manual annotation be
accommodated within this approach?
Usually, in order to train processing modules in NLP,
developers use manually annotated corpora. To create
such corpora, they make use of annotation tools
configured to help placing XML elements over a text, and
to decorate them with attributes and values. As such, if
annotation tools do, although in a different way, the same
jobs which can be performed by processing modules, it is
most convenient to associate them with edges in the graph
in the same way in which processing modules are
associated with these edges.
Meanwhile, it is clear that manual annotation cannot be
chained in complex processing architectures in the same
way in which automatic annotation can. In order to
differentiate between automatic and manual processes, as
encumbered by pairs of schemas observing the
subsumtion relation, it results that edges should have
facets, for instance AUT and MAN. Under the AUT facet

of a POS-tagging edge, for instance, the automatic
POS-tagger should be placed, while under the MAN facet
– the POS-tagging annotation tool should be placed.
The configuration files of these tools can usually be
separated from the tools themselves. We can say that the
corresponding configuration files particularise the
annotation tools, which label edges of the graph, in the
same way in which language specific resources
particularise processing modules.

IPR and cost issues
Intellectual property rights can be attached to documents
and modules as access rights. Only a user whose profile
corresponds to the IPR profile of a resource/tool can have
access to that file/service. As a result, while computation
of processing chains within the hierarchy is open to
anybody, the actual access to the dynamically computed
architectures could be banned to users which do not
correspond to certain IPR profiles of certain component
modules or resources they need.
More than that, some price policies can be easily
implemented within the model. For instance, one can
imagine that the computation of a flow results also in a
computation of a price, depending on particular fees the
chained Web servers charge for their services.
Out of this, it is also imaginable the graph as including
more than one edge between the same two nodes in the
hierarchy. This can happen when different modules
performing the same task are reported by different
contributors. When these modules charge fees for their
services, it is foreseeable also an optimization calculus
with respect to the overall price over the set of paths that
can be computed for a required processing.

Facing the diversity of annotation styles
It is a fact that, today, a huge diversity of annotation
variants circulates and is being used in diverse research
communities. It is far from us to belief that a Procustean
Bed policy could ever be imposed in the CL or NLP
community, that would aim for a strict adoption of
standards for the annotated resources. On the other hand,
it is also true that efforts towards standardization are
continually being made (see the TEI, XCES, ISLE, etc.
initiatives). Moreover, Semantic Web, with its
tremendous need for interconnection and integration of
resources and applications on communicating
environments, boosts vividly the appeal for
standardization. It is therefore foreseeable that more and
more designers will adopt recognized standards, in order
to allow easy interoperability of their applications. A
realistic view on the matter would bring into the focus the
standards while also providing means for users to interact
with the system even if they do not rigorously comply
with the standards.
We have seen already that, by classification, any schema
could be placed in the hierarchy. Of course, classification
could increase in an uncontrollable way the number of
nodes of the hierarchy. The proliferation could be caused
not so much by the semantic diversity of the annotations,
as by the differences in name spaces (names of tags and
attributes).
Technically, this can be achieved by temporarily creating
links between the new schema classified by the hierarchy,
as a new node, and its corresponding schema in the
hierarchy. Processing along such a link is different than

the usual behaviour associated to the edges of the graph
and is specific to wrappers. It describes a translation
process, in which the annotation is not enriched, but rather
names of XML elements and attributes are changed.
Ideally, the processing abilities of the hierarchy should
include also the capability to automatically discover
wrapping procedures. This task is not trivial since it
would require that the hierarchy “understands” the
intentions hidden behind the annotation, displaying, this
way, some kind of semantic processing capabilities which
is not easy to implement. However, recent initiatives as
GOLD make us believe that significant steps forward in
this direction are near us.

4. Evaluation

4.1 ALPE vs. GATE and UIMA

In this section we will compare functionalities of ALPE
with those of GATE and UIMA, systems which can give
very similar results with our.
First of all, ALPE is intended primarily to facilitate the
user’s interaction with the system, allowing for an
programming non-expert to integrate resources and tools.
As a standalone linguistic processing environment, the
user is presented with a visual representation of a
hierarchy of annotation formats and has basically three
main choices: s/he can add a new resource to the hierarchy
(for example enabling an already integrated processing
module to work for another language by adding a
corresponding language model), add a new processing
tool (attached to an existing edge, or attached to a newly
created edge) or compute and use a processing chain
(providing the input file and selecting the output format).
GATE offers a user interface adequate for creating and
using processing chains. Chains have to be built manually
and presuppose an intimate knowledge of the system.
UIMA is even more oriented to the NLP professional,
offering little in terms of visual user interaction. A direct
comparison that would put on stage quantitative
evaluations is difficult to be made for these kinds of
systems. Perhaps a better prospect would be a qualitative
comparison performed by a significant pool of users,
providers as well as consumers of language resources and
tools. In the following, we make just an estimative
comparison, but a qualitative evaluation versus human
performance is planned.
Every one of the three main functionalities (adding a new
resource, adding a new tool, and computing and using a
processing chain) is easier to perform in ALPE. Both
UIMA and GATE require some formal description to be
written for each new resource integrated into the system,
while ALPE generates these formal descriptions
automatically. When adding a new processing tool, ALPE
has much more permissive restrictions with regard to
what tool can be integrated: it basically has to be either a
webservice or a command line, executable under
Windows or Linux. GATE allows the user to integrate at
least Java and Perl based tools, and this is done by writing
some dedicated code, a task which is however above the
capabilities of some users. UIMA is even more restrictive,
allowing only C++ based tools to be integrated, and only
after significant implementations and changes to the
original code. However, an extension allowing modified
Perl, Python and TCL modules to be integrated is

available.
An evident advantage of ALPE over both GATE and
UIMA is that the processing chains in ALPE are
automatically computed, therefore requiring no human
intervention. Moreover, they can be created between any
two formats defined in the hierarchy (providing the
modules decorating the connecting edges are available,
otherwise there are signalled as missing). ALPE deals
with multilinguality, thanks to its core module that
performs language identification for each input file, then
selects to corresponding tools and language resources, if
available. GATE and UIMA are mainly focused on
English (GATE incorporating also modules dedicated to
some other languages), but the user has to make sure to
select the proper modules when designing a processing
chain for a document in other language than English.
Let us consider the example of a use-case in which the
user has two processing tools s/he wants to use on the
same input file and to merge the results in an output file.
Using ALPE, this user has to specify the input/output
formats of the modules, then let the system integrate the
tools as arches linking the corresponding nodes in the
hierarchy (in the case when one of both of these formats
are not currently part of the hierarchy, they will become as
such), then input the file and specify the required output
format (node). Using GATE, the user has to implement
the integration of the tools to make them available to the
processing chain building interface, then build and run
two processing chains, one for each tool, then merge the
results outside GATE (since it does not allow parallel
processing and merging of annotations). UIMA performs
this task basically in the same way as GATE, requiring
even more implementation when integrating the new tools,
but allows annotation merging.

4.2 Qualitative evaluation

In order to evaluate ALPE versus human computational
linguistic specialists, we have developed an ALPE
augmented hierarchy configured for a current research
project involving documents in 9 European languages
(Bulgarian, Czech, English, German, Dutch, Maltese,
Polish, Portuguese and Romanian) and using a significant
number of language processing tools8 . All documents
have to be annotated according to 6 main annotation
formats (and 8 optional ones), resulting a significant
hierarchy of standards. This hierarchy is already
implemented and serves as a management and access
facility for the collected documents.
At the time of writing this paper, an ALPE core hierarchy
specific to the mentioned project is implemented for
English and Romanian.

5. Conclusions

We think that the model we propose and its first
implementation, as the ALPE system, encapsulate
different organisational, standardisation and processing
features which make it interesting for the goals of a
project like CLARIN.
In this proposal we have been concerned with the
following features of functionality, also identified as of

8 LT4eL – an FP6 project (www.lt4el.eu)

primary importance in CLARIN9:
• unique access gate and distributivity: although

distributed in different places, LR and LT could be, in
the vision described in this paper, identified through a
single access gate;

• metadata policy: primary text and speech
documents should be given the possibility to be
accompanied by metadata describing human and/or
automatic annotation over them. The ALPE
conventions allow for the metadata to have a form
which make it easily removable when the primary
raw documents are needed of being recuperated;

• independence of representation: it is clear that the
XML representation adopted by ALPE allows for LR
to be manipulated in such a way as to benefit of the
same treatment irrespective of the particular metadata
conventions;

• quick access: ALPE comes very close to the
objective that CLARIN LR and LT be accessed
instantaneously from all over Europe;

• conversion services: the ALPE approach
incorporates features that allows easy conversion
operations from and onto different representations;

• processing services: the ALPE portal provides
processing services for enrichment and or
simplification of metadata attached to LR;

• versioning: the portal allows manipulation of
different versions of data as well as of the metadata
accompanying the texts;

• multilinguality: the structure allows uniform
treatment of documents in different languages, as
well as of parallel texts;

• IPR issues: the structure provides means of dealing
with IPR.

In this paper we have described a model of dynamical
building of processing architectures based on a hierarchy
of XML schemas and an implementation – called ALPE.
We have argued that ALPE brings some advantages over
other known systems with similar objectives, mainly
coming from a plus in manoeuvrability and complete
automation of the configuring tasks. It is also shown how
ALPE, has brought already significant advantages in the
context of a multilingual research project. In this context
ALPE has automatically configured complex processing
chains involving several modules and documents in
different languages. The features brought by the addition
of an ALPE type hierarchy into a complex project
contribute significantly to acquire multilinguality,
distributivity, versioning of language resources, automatic
and manual annotation, management of IPR and cost
issues, as well as managing diversity of annotation styles,
features that the CLARIN project considers of extreme
importance.
One important further development of ALPE will be a
web-service allowing users to build, configure and use
ALPE hierarchies on the web, either as a limited
password-protected resource or a global linguistic
resources collection. This type of hierarchy is able to
manage multilingual resources as well as resources which

9 We foresee that other requirements, as, for instance,
discovery of resources and tools, preservation of
resources, archiving services, content discovery,
distribution, authentication and authorization, could also
be designed around the structure we propose.

require a fee to be paid before usage. Each user will be
able to contribute its own tools and annotated resources,
as well as using processing chains adapted to its
specifications, both in terms of input and output formats
and cost and performance issues.

Acknowledgments
Part of the work for the paper was supported by the
ROTEL (CEEX project) AMCSIT contract no.
29/03.10.2005, the CLARIN INFRA-2007-2.2.1.2 project,
and the FP6 LT4eL project.

References

T. Brants (2000): TnT: a statistical part-of-speech tagger.

In Proceedings of the sixth conference on Applied

Natural Language Processing, Seattle, Washington, pag:

224 – 231.

D. Cristea, C. Butnariu (2004): Hierarchical XML

representation for heavily annotated corpora. In

Proceedings of the LREC 2004 Workshop on

XML-Based Richly Annotated Corpora, Lisbon,

Portugal.

D. Cristea, C. Forăscu, I. Pistol. (2006):

Requirements-Driven Automatic Configuration of

Natural Language Applications. In Bernadette Sharp

(Ed.): Proceedings of the 3rd International Workshop

on Natural Language Understanding and Cognitive

Science - NLUCS 2006, in conjunction with ICEIS

2006, Cyprus, Paphos, May 2006. INSTICC Press,

Portugal. ISBN: 972-8865-50-3.

H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan.

(2002): GATE: A framework and graphical

development environment for robust NLP tools and

applications. In Proceedings of the 40th Anniversary

Meeting of the ACL (ACL’02). Philadelphia, US.

H. Cunningham, V. Tablan, K. Bontcheva, M. Dimitrov.

(2003): Language engineering tools for collaborative

corpus annotation. Proceedings of Corpus Linguistics

2003, Lancaster, UK.

D. Ferrucci and A. Lally. (2004): UIMA: an architectural

approach to unstructured information processing in the

corporate research environment, Natural Language

Engineering 10, No. 3-4, 327-348.

N.Ide, Bonhomme P., Romary L. (2000) : XCES: An

XML-based Encoding Standard for Linguistic Corpora,

Proceedings of the Second International Language

Resources and Evaluation Conference. Paris: European

Language Resources Association

