Sustainable operability: Keeping complex resources alive

Menzo Windhouwer?, Alexis Dimitriadis®®

@University of Amsterdam, ®Utrecht institute of Linguistics OTS
M.A.Windhouwer@uva.nl, alexis.dimitriadis @let.uu.nl

Abstract
The data contained in a typological database are difficult or impossible to use on their own. Sustainability must include not only preserva-
tion of the data, but also of the interface designed to present them—or a reasonable substitute. The Typological Database System project
(TDS), which originated as a way to address issues of fragmentation and interoperability of typological databases, also points the way to
a model of sustainability beyond the lifetime of a database’s host application.

1. Introduction: Obstacles to the
sustainability of complex resources

While the sustainability of language resources such as cor-
pora and dictionaries can be largely safeguarded by relying
on documented, standard formats for their encoding, the ap-
proach does not scale well for resources with more complex
internal structure, for which no general standard can be suf-
ficient. Such complex resources have the characteristic that
they require a certain software tool for their proper utiliza-
tion; and that this software tool is not generic (e.g., an audio
player, text editor, or linguistic annotation tool that supports
the storage format of the resource), but is made specifically
for the resource in question: Databases, in particular, are
typically accessed through a custom-made user interface.
A second, interacting problem is that much of the infor-
mation needed to properly navigate and interpret such data
is encoded in its user interface, not with the data itself. We
consider the case of typological databases, and describe our
approach to their integration and long-term sustainability.
Consider, as a concrete example, a typological database
consisting of several linked tables, accessible over the in-
ternet through a web interface comprising several forms.
Numerous such databases exist today, and more are being
created at a rapid pace.! Once they are completed, such
databases are subject to the usual perils afflicting electronic
linguistic resources: Gradual obsolescence of their encod-
ing formats or host software; sudden disappearance due
to incompatible software updates, retirement of a “legacy”
server, or as URLs change and links fail to be updated;
gradual fall into unusability with the dissipation of the in-
sider knowledge often needed to usefully operate a poorly
documented resource; etc.

To render such a database sustainable, it is not enough to
export its tables in some format guaranteed to be readable
(e.g., tab-separated files in a Unicode encoding, or even an
SQL dump in some portable format). Doing so is insuffi-
cient in two important respects:

"Web-accessible databases include the Graz Database on
Reduplication, at http.//reduplication.uni-graz.at/; the databases
of the Surrey Morphology Group, at http://www.smg.surrey.ac.
uk/; the Typological Database of Intensifiers and Reflexives,
at http://userpage.fu-berlin.de/~gast/tdir/; the Stress Typology
Database, at http://stresstyp.leidenuniv.nl/; the Berlin-Utrecht Re-
ciprocals Survey, at http://languagelink.let.uu.nl/burs/; etc.

a. The meaning of the table contents, and their inter-
relationships, are not explicitly given in the data ta-
bles; this is the familiar problem of documentation
for a resource, but exacerbated (compared to corpora
or dictionaries) by the complexity and variability of
database structures, and by the relatively abstract level
of linguistic description involved.

b. Even if accompanied by full documentation, a static
collection of data is difficult, tedious, or even impos-
sible to utilize without a suitable software tool. The
forms and menus created by the original developers
to operate a database are essential to its use, but they
cannot be exported along with the data. We will term
this consideration, which has not received as much ex-
plicit attention as issues of format and access, as the
problem of sustainable operability.

To appreciate the scale of the operability problem, con-
sider the difficulty of using a general-purpose table browser
(a spreadsheet application, for example) to navigate the
contents of a database consisting of several tables. Table
columns (attributes) typically contain numeric values ex-
pressing different properties (whose meaning is, at best,
explained in a separate document).” The tables are linked
to each other by means of numeric keys with no intrinsic
meaning. The process of navigating such data is tedious and
error-prone, and likely to deter all but the most motivated
researchers.

Lack of operability also has a detrimental impact on re-
source discovery: Summary metadata can only give an ap-
proximate indication of the utility of a resource for any par-
ticular task. A future researcher who will need to evaluate
a large number of potentially useful resources will be hin-
dered by the inability to inspect their contents without a
large investment of effort.

1.1. The limits of data-only formats

The vast majority of existing typological databases are
stored in relational database management systems. The

?In proper relational design, numeric values can be indices into
a separate table that matches numeric codes to a text equivalent.
In practice, however, the meaning of numeric values is often em-
bedded in the user interface; and prose documentation can be non-
existent or out of date.

relational structure itself is a sort of encoding standard,
and would seem to provide a basis for standardization:
While SQL implementations are too variable for database
dumps in SQL format to be themselves portable, some
version or extension of standard SQL could conceiv-
ably be chosen as the standard for data archiving. Even
if the obstacles to unifying the many extant flavors of
SQL could be overcome, however, the result would al-
low implementation-independent data storage but would
still not render databases operable. The SQL schema of a
database is insufficient in the same respects already men-
tioned:

First, it is an incomplete description of the database, since
it does not include those parts of the database logic that are
encoded in the user interface: Documentation and instruc-
tions to the user, business rules (explicit or implicit), and,
in many cases, the text equivalents of values and menu op-
tions that are stored as small integers in the database. In the
language of the OAIS Reference Model (ISO 14721, 2003),
an SQL dump of a typological database is rarely “indepen-
dently understandable.”

Second, general-purpose browsers for relational databases
are too low-level; they allow viewing of one table at a time,
but do not automatically perform appropriate joins or ag-
gregations of records in one view—and, even with knowl-
edge of foreign key declarations, have no way of determin-
ing which joins or aggregations are “appropriate.” Simply
put, the user interface of a database is underdetermined by
its relational schema.

We doubt that these problems are restricted to relational
databases. Similar issues doubtless arise with other com-
plex resources developed with their own interface, and with
other data models besides relational databases.

1.2. Toward a solution

The difficulty of achieving sustainable operability can be
summarized as follows: Complex resources require ad hoc
software that cannot be maintained over the long term; so
operability can only be ensured by relying on generic soft-
ware that can be maintained, and periodically replaced, in a
cost-effective manner. But traditional data archiving prac-
tices do not provide enough information for generic soft-
ware (or even human specialists in many cases) to recon-
struct the proper structuring and presentation of the data.

It can be seen now that to fully meet the goal of sustain-
able operability, the archived data must first be “indepen-
dently understandable.” We can distinguish here between
user-oriented metadata (documentation), which helps users
interpret the data when it is presented, and formal, system-
oriented metadata that is machine-understandable and can
describe not only the encoding and relational structure (nar-
rowly considered), but also appropriate ways of managing
and presenting the data to the user.

3The OAIS Reference Model charges conforming archives
with ensuring that archived information be “independently under-
standable” by its designated target community, i.e., interpretable
without recourse to hard-to-access resources, including the indi-
viduals who created it. This is considered necessary for long-term
data preservation. We thank an anonymous reviewer for calling
this point to our attention.

What is needed, minimally, is a software platform that
provides operability of typological databases with diverse
structures. While no tool could probably be fully generic
and at the same time achieve operability without a pro-
hibitive amount of configuration, the problem is not in-
tractable when restricted to one application domain at a
time—in our case, to the data models applicable to typo-
logical databases. But no software platform can make up
for the lack of information that is essential to managing or
understanding a resource; this problem must be addressed
by ensuring that the required information is collected, and
is suitably utilized by the software platform in question.

Sustainable operability, in short, requires two things: suffi-
ciently rich metadata and documentation for the data to be
not only “independently understandable” by its end-users,
but also for automatically determining appropriate ways of
rendering it; and a software tool, or a series of software
tools over a long period of time, that utilize this informa-
tion to provide the actual operability.

To provide operability of an open-ended collection of re-
sources in a practical way, there must be a way for a generic
application (or several) to be used with all of them. Be-
cause the native storage formats (usually relational) are in-
sufficient to describe typological databases to a degree that
allows operability via a generic tool, we adopt a hierarchi-
cal, semi-structured data model that combines the data itself
with rich documentation of database contents and of the
linguistic properties being described. We will term this the
Integrated Data and Documentation Format (IDDF). Sus-
tained operability is then a matter of mapping resources to
the IDDF format at the time of archiving, and maintaining a
generic tool, or tools, that support searching and browsing
over IDDF resources. This approarch accomplishes oper-
ability of the databases in the narrow sense, and also pro-
vides access to the documentation needed by the end user
to properly interpret the available data.

Eventually, even the generic software will approach obso-
lescence due to changes in web technology, host operating
systems, and the like. At that point it will need to be re-
placed by new IDDF-aware software with analogous func-
tionality. The self-describing nature of IDDF documents is
meant to support their migration to new access tools (or
even the addition of new tools next to existing ones) with-
out any changes to the resources themselves.

But long-term operability is more than a matter of keep-
ing the software running. A proper solution should also
support other considerations of sustainability. In particu-
lar, it should be positioned within a scenario involving data
archiving and its complement, resource discovery.

The Typological Database System (TDS), described in
more detail in section 2., is a working implementation
of such an architecture. The TDS provides integrated ac-
cess to a collection of independently developed typolog-
ical databases through a single, generic web interface.
Databases are imported into the system through a pro-
cess that combines rich documentation of all aspects of the
data with automated transformation the data itself into a
common, hierarchical data space. The result is a unified
data structure (the IDDF data tree) that can be searched or

e e

$

User interface

!

Application Programming Interface

User
Tool

Knowledge

IDDF base
data tree
Import —

Domain
expert

Figure 1: The TDS architecture

browsed over the web through the TDS webserver.*

While the process can easily be performed on each database
separately, the approach has the added benefit of allowing
the integration of multiple databases into a unified resource.
(This is in fact the primary goal of the TDS). Arguably, in-
tegration is not essential for sustained operability of the re-
sources; but it greatly enhances their usefulness, efficiency
of utilization, and ease of resource discovery.

Data archival inadvertently exacerbates the problem of op-
erability, because archives cannot commit to long-term
hosting and maintaining a caleidoscope of diverse database
applications; rather than wait for obsolescence of the soft-
ware or hardware, operability threatens to be lost at the
moment of uploading the static content of a resource to a
digital archive. From our perspective, this can be seen as
a blessing in disguise: Sustainability problems can be ad-
dressed while the original technical infrastructure is still
operational, and the custodians of a resource still possess
the required knowledge (either in their heads or as offline
documentation).

2. The Typological Database System

The Typological Database System is a web-based service
that provides integrated search access to a collection of in-
dependently developed typological databases. The system
consists of a data integration module and a web server that
provides access to the integrated data.> At the intersection
of the two parts is the IDDF, a hierarchical data model that
integrates data and metadata from multiple databases into a
unified data space.

Figure 1 shows the TDS architecture. The primary data in-
put to the system comes from the component databases.

“http://languagelink.let.uu.nl/tds/ .

>The TDS is a project of the Netherlands Graduate School of
Linguistics (LOT). It is supported by a grant from the Netherlands
Organization for Scientific Research (NWO), and by funds from
the participating universities (University of Amsterdam, Utrecht
University and Leiden University). For more information on the
TDS, see (Saulwick et al., 2005; Dimitriadis et al., 2005; Dimitri-
adis et al., 2008).

A domain expert creates an import schema that includes
a mapping of each database into a unified hierarchy, en-
riched by documentation of the data and its relation-
ship to the common TDS knowledge base. On the ba-
sis of this schema, data and documentation from multiple
databases are integrated into a single hierarchical struc-
ture, the IDDF data tree. A separate component of the sys-
tem, the TDS webserver, supports querying, browsing, and
resource-discovery functions over the collected data.

The entire system is XML-based and relies on a number of
(commercial) open source or freely available libraries. It is
written largely in Java, XSLT, XQuery and a XML pipelin-
ing language specific to the application server 1060 NetK-
ernel.®

With around a dozen databases currently in the TDS, the to-
tal number of parameters in the system is well over a thou-
sand; hence the system follows a two-stage access model,
consisting of resource discovery followed by query formu-
lation and execution. During the resource discovery stage,
users search or browse the combined metadata to discover
database fields of interest. The user interface supports in-
tegrated search, display and navigation of the metadata,
presenting users with the information necessary to assess
both the relevance and the correct interpretation of a field.
Selected fields are accumulated using a shopping basket
model. In the second stage, the user constructs and executes
a query on the basis of the fields in the query basket.

2.1. The integration process

The import schema is defined in a special-purpose lan-
guage developed by the TDS project, the Data Transforma-
tion Language (DTL). 7 The TDS import engine interprets
the DTL specifications, and uses an appropriate software
plug-in to extract data from a copy of the original database
(which can be in a variety of database formats) and trans-
form it into the IDDF tree.

Typically, the documentation provided with a database is
insufficient to make its semantics and logical structure fully
explicit, and the creation of the DTL specification involves
repeated interaction between the TDS domain expert and
the creators of the database. The required metadata, which
often lives only in the heads of the database’s creators, is
in this way elicited and recorded. The process is non-trivial
but necessary for the sustainability of the data. Because the
developers of the component databases have devoted much
time and effort to collecting information in their databases,
each component database represents a valuable resource;
and therefore the time investment is justified.

In any event the process is reusable: Once the transfor-
mation schema has been defined, new data added to the
database can be imported with minimal human interven-
tion. In this way a database can be mapped to the IDDF
before the data collection is finished and its data frozen.

Shttp://www.1060.0rg/ .

"The DTL is a non-procedural language that allows an IDDF
schema to be specified and annotated, and the resulting data tree to
be populated from the database contents. It was designed for use
by linguists with no special technical background. See (Saulwick
et al., 2005; Dimitriadis et al., 2008).

Only if the database schema is modified is it necessary to
modify the transformation schema.

It should be added here that while it is necessary to have
a working understanding of a database’s semantics in or-
der to integrate it into the TDS, much of the documentation
collected and recorded into the IDDF tree is not explicitly
encoding-related, but intended for the benefit of the end-
user. For example, a TDS component database gives the
number of basic color terms in some languages as “4.5”.
As a matter of encoding it is enough to know, as its docu-
mentation explains, that color term counts can be fractional
numbers, and that 4.5 means “between four and five”. But
what does “between four and five” mean? It might indi-
cate a dialectal split, inconsistencies between speakers, the
presence of a marginal or dubious color term, uncertainty
about the facts, or all of the above. The answer is of interest
to potential users of the database, and only its creators can
provide it.

Conceptually, the DTL is just one means of carrying out
this transformation;® what is important from our present
perspective is that the DTL, or an equivalent, defines a map-
ping of a data resource into an IDDF tree; and that the result
comprises a combination of data and relevant documenta-
tion. Our vision of the IDDF is as an open format, which
can be generated and manipulated by other tools. Section 3.
gives more details on its structure, and on the way other
components of the TDS architecture can be generalized.

2.2. What is transformed

Independently created data resources differ in a variety of
ways, which need to be addressed during the integration
process. The TDS makes an important distinction between
differences in encoding (in the broad sense) and differences
stemming from deeper theoretical or practical considera-
tions. The former include variation in font encodings or no-
tational conventions such as interlinear gloss labels, codes
for Boolean values (true/false vs. 0/1, etc), the organiza-
tion of information into fields and tables, etc. The deeper
differences are ultimately differences in meaning (seman-
tics): They stem from considerations such as the theoretical
commitments of a research group (including the associated
terminology), the specific classificatory categories and cod-
ing decisions adopted during the construction of a database,
etc.

While standardization efforts might one day lead to more
uniformity in structure and encoding among databases, they
will have no effect on the divergence of theoretical view-
points and research traditions that constitutes the most in-
tractable source of heterogeneity. These diverse viewpoints
are not only dearly held by their practitioners: They are the
subject matter and outcome of linguistic analysis, and can-
not (should not) be replaced by any uniform, agreed-upon
framework. While it might seem like a good idea to trans-
form data into some ‘“‘standard” terminology, the abstract
nature of typological data collections makes this impos-
sible. First of all, two theoretical terms are rarely if ever
exactly co-extensive; even if they were, the terminology

80ne could, for example, convert data into XML and transform
it by means of hand-written XSLT, as the TDS did during the pilot
phase of the project.

<iddf:warehouse
xmlns:iddf="http://.../ns/iddf">
<iddf:meta>
<iddf:scope id="tds" type="warehouse">

</iddf:scope>

<iddf:notion id="nl" name="language"
scope="tds" type="root"
key-datatype="enum">
<iddf:label>Language</iddf:label>
<iddf:description>

One of the world’s languages

</iddf:description>

</iddf:notion>

</iddf :meta>

<iddf:data xmlns:tds="..." ...>
<tds:language iddf:notion="nl"
key="...">

</tds:language>

</iddf:data>
</iddf:warehouse>

Figure 2: The top-level structure of the IDDF.

adopted by a researcher is often the result of a deliberate
process, and can be felt to be as much a part of a linguistic
analysis as its empirical claims. To substitute terminology
under such circumstances would be a form of misrepresen-
tation.

Accordingly, the TDS approach is to compensate for en-
coding differences wherever possible, by transforming the
source data to adhere to, or at least be relatable to, a uni-
form design (“object model”); but semantic divergences are
maintained, and are made explicit by suitable documenta-
tion and careful construction of relationships between vari-
ous levels of metadata.

Because the various component databases each have their
own schema and focus, i.e., they are heterogeneous, the ag-
gregated IDDF data is semi-structured. To assist in the pro-
cess of resource discovery by end-users, the TDS metadata
includes links to a unified knowledge base, consisting of
an ontology of linguistic terms and several taxonomies that
provide quick domain-oriented entry points.

3. Sustainable operability with the IDDF

At the heart of the TDS, and of our vision for sustainable
database operability, is the IDDF data tree. It organizes data
and metadata into a unified structure that provides sufficient
information for generic resource discovery, query opera-
tions, and interactive browsing tools.

3.1. The IDDF data structure

The IDDF data structure consists of two parts, a metadata
schema and a data part. The metadata part defines and anno-
tates the schema to which the data part conforms.” We use
the term “data tree” to refer to the entire structure, since the

The IDDF can be conceptually considered as the concatena-
tion of two documents. The document as a whole is valid XML,

two parts are closely interrelated. An abbreviated example
is shown in figure 2. (A detailed example is given in the
Appendix).

Figure 3 provides an informal overview of the conceptual
structure of the IDDF data tree. It can be informally under-
stood as a hierarchy of nodes (called Notions), which serve
a variety of functions.

(namespace)
Grouping Notion «+ (documentation)
(more groups)
Data Notion « (documentation)

(Data) « (value documentation)

Figure 3: Conceptual organization of the IDDF data model.

At the leaves of the tree are Field Notions, which corre-
spond to fields of the component databases.'? When the tree
is built (“instantiated”) by importing the databases, these
Notions are populated with the data. (Note that the docu-
mentation remains in the schema portion of the IDDF, as
shown above).

There are also Grouping Notions, which contain other No-
tions (either of the data or the grouping kind) and thus de-
fine the hierarchical structure of the IDDF data tree. Fields
from several databases can be mapped to the same part of
the tree, even the same Notion; for example, the attribute
Language Name is a single Notion used for all databases.
(The TDS organizes data according to topic, regardles of its
database of origin; one could easily adopt a different policy,
and map each database into a dedicated part of the hierar-
chy).

To facilitate management of all this data from diverse
sources, Notion definitions are overlaid with a system of
namespaces, which can be nested; Notions defined in a par-
ticular namespace can only be used within its scope. For
example, the TDS project defines a top-level “tds scope”
that provides the upper levels of semantic context, such
as clause-level phenomena. The component databases can
then define database-scoped Notions as descendants of ap-
propriate points in the global hierarchy.

Besides its content, each Notion is associated with docu-
mentation and format information (which are stored in the
schema part of the IDDF, as detailed below). Grouping No-
tions can be associated with a description of the kind of data
they dominate, including summaries of the linguistic theory
and terminology of the data providers; Field Notions can be
associated with a description as well as an enumeration of
possible values, which can themselves have associated doc-
umentation.

validated against a Relax NG schema that essentially ignores the
data section. Validation as an IDDF document requires two passes:
After the initial minimal validation, an XSLT 1.0 stylesheet is run
on the metadata section to generate a complete Relax NG schema.
This is then used to validate the entire IDDF document.

A sample IDDF document, and the required schema and
stylesheet, are available at http://languagelink.let.uu.nl/tds/iddf/ .

10The relationship to the original database fields is not one-to-
one. Some Notions are in fact created by splitting up or combining
several database fields.

Schema tds:language picinventory tds:identification

& 5o

pi:phoneme tds:name tds:ISO-639-3 SylITyp:vowel

pi:phoneme

tds:identification pi:inventory

Data tds:language

pi:phoneme pi:phoneme

key="p" key='
SyllTyp:vowel
pi:phoneme “ -

tds:1SO-639-3 prphoneme

reference="p” reference="b"

key="l-iso-tba”

tds:identification pizinventory

tds:name

“Wari' (Tubarao)” “tba”
“Huari”

Legend

O a Notion O a top Notion O a root Notion @ areference

Figure 4: Graphical representation of the example IDDF
schema and data tree

In many cases, a database uses a number of fields for infor-
mation that belongs together and should be considered as a
whole. For example, geographic latitude and longitude to-
gether make up geographic coordinates, and these together
with language name, ISO code, and other essential infor-
mation make up the Language Identification group. Each
such group of fields is mapped to a subtree of the IDDF,
which is identified as a semantic context by means of a spe-
cial label assigned to its root Notion. These Top Notions, as
they are called, are treated specially by the TDS search and
browsing interface.

Larger hierarchies can be built by reusing these semantic
contexts and nesting Notions inside each other. There can
be multiple separate hierarchies, each with its own top-level
root (called a Root Notion). Hierarchies can be linked to
each other by establishing a primary/foreign key relation-
ship between a Root Notion and another Root Notion. The
role of Root Notions in the IDDF data model can be com-
pared with tables in the relation model.

Figure 4 shows how the hierarchical definitions in
the schema, tds: language, tds:identification,
pi:inventory and pi:phoneme, are utilized dur-
ing the instantiation process of the data tree. The ref-
erence leaves indicate the valid ways of linking these
hierarchies together; e.g., pi:inventory is nested in
tds:language; through the pi: phoneme reference in
pi:inventory, the hierarchies tds:language and
pi:phoneme are related.

Each of these building blocks, i.e., Notions, scopes and
values, can be extensively described in the metadata.
The metadata part of the IDDF document shown in the
Appendix starts with describing four scopes: tds, pi,
Sy11Typ and UPSID. Due to space limitations, we do not
discuss scopes further. A Notion schema can contain the
following information:

an identifier;

a scope;

(optional) a label;

(optional) a description, possibly formatted using XHTML;

(optional) one or more typed links to the knowledge base;

AN U o e

(optional) one or more links to other Notions;

7. (optional) semantic data type;
8. (optional) semantic value data type and/or key data type

9. (optional) an enumeration, possibly partial, of the possible
values or key values; and for each (key) value:

(a) the literal (key) value as it appears in the data;

(b) (optional) a label;

(c) (optional) a description;

(d) (optional) one or more links to the knowledge base;

(e) (optional) one or more links to other Notions.

The example in the Appendix includes several No-
tions that illustrate some of these documentation units:
tds:IS0-639-3 has a description marked up with
XHTML to include a link to the standards website;
pi:phoneme and Syl1Typ:vowel have links to con-
cepts in the ontology, such as segment and vowel,;
pi:inventory has the semantic data type UPPC (Uni-
versal Phoneme Positioning Chart, see (Dimitriadis et al.,
2008)); the metadata of Root Notions tds:language
and pi:phoneme contain enumerations of their possible
key values, while Sy11Typ:vowel contains an enumer-
ation of its values (see Figure 5).

<iddf:notion id="n7" name="vowel"
scope="SyllTyp">
<iddf:label>Vowel</iddf:label>
<iddf:description>
Is the segment a vowel?
</iddf:description>
<iddf:1link type="concept" rel="as"
href="http://...owl#vowel"/>
<iddf:1link type="concept" rel="to"
href="http://...owl#vocalicFeatureNode"/>
<iddf:values datatype="enum">
<iddf:value>
<iddf:literal>+</iddf:literal>
<iddf:description>
The segment is a vowel.
</iddf:description>
</iddf:value>
<iddf:value>
<iddf:literal>-</iddf:literal>
<iddf:description>
The segment is not a vowel.
</iddf:description>
</iddf:value>
</iddf:values>
</iddf:notion>

Figure 5: Example of IDDF metadata associated to a notion.

3.2. The data

Since there are multiple top-level Root Notions, the data
tree is actually a forest of trees, each of them an instantia-
tion of a hierarchy dominated by a Root Notion. These trees
are linked to each other using the key and ref attributes
(see the Appendix). As Notions (with the exception of Top
and Root Notions) can’t be uniquely identified by just the
combination of the scope and the identifier, each node in
the tree also specifies which Notion is being instantiated,
using the iddf : notion attribute.

Each instantiation is based on data from at least one com-
ponent database. The source of a node in a tree is indicated
by the iddf : srcs attribute. When data loaded from var-
ious databases are in agreement, they are instantiated as a
single node and this attribute lists all these database scopes.
But databases may also disagree. For example the Sylla-
ble Typology Database uses the name “Wari’ (Tubario)”
for a certain language, while UPSID uses “Huari.” Both
names are stored in the IDDF document, but each in its
own iddf:value node with a srcs attribute indicating
its origin.!!

3.3. The IDDF surroundings

3.3.1. The metadata and data source

The IDDF, as already mentioned, is an ordinary XML for-
mat. There are no barriers to creating valid IDDF docu-
ments with tools other than the DTL engine; one might
wish, for example, to design a description language with a
different syntax and primitives, perhaps for resource types
that are very different than the typological databases we
have been working with. Another possibility might be for
a (complex) database application to directly support IDDF
as an export format, without the intervention of a descrip-
tion language. In this case, the descriptive metadata might
still need to be manually supplemented. This indicates that
there could be a need for specific IDDF metadata editors. It
is easy to visualize the use of a specific GUI to annotate No-
tions, and perhaps even to create the semantic hierarchies
(contexts).

3.3.2. Links to external semantic resources

As figure 1 shows, the IDDF document can be linked to a
knowledge base. In the case of the TDS this consists of an
OWL ontology, developed during the course of the project,
and a number of SKOS taxonomies. This allows the TDS
to semantically extend queries by following the formal re-
lationships in the ontology. The taxonomies provide alter-
native organizations of entry points into the data schema.
Other forms of encoding knowledge, e.g. in the form of a
tag cloud, could also be associated with the IDDF schema.
In the TDS project, developing the metadata and the knowl-
edge base went hand in hand. In applications of IDDF
where the metadata is readily available one could also ex-
tract the knowledge base, or part of it, by mining the meta-
data (Feldman and Sanger, 2006; Cimiano, 2006). To get
enough input for the mining algorithms one might use other
related inputs, e.g., in the case of scientific databases the
articles written on the basis of the data. One could also
bootstrap the mining process by manually creating an initial
domain-specific knowledge base.

3.3.3. Standards

Because the data in typological databases is overwhelm-
ingly about languages, data aggregation depends crucially
on reliably identifying the language that data is about. The
TDS protocol relies on ISO 639-3 language codes (ISO

"Note that the IDDF could have also allowed each database
to be mapped to a separate hierarchy, avoiding any chance of an
overlap or clash.

639-3, 2007), internally and externally, to identify the lan-
guage described and carry out data integration. ISO lan-
guage codes are used internally as part of the key, and they
are always utilized for data integration, if available. For
databases or records that do not provide them, the TDS do-
main experts attempt to add them (by means of the DTL
script), on the basis of language names and the assistance
of the database creators. Again, this is a labor-intensive pro-
cess but is justified in view of the value of the data, and un-
avoidable if the language described is to be unambiguously
identified. (Once again the result is enrichment of the orig-
inal data through the transformation process). In alterna-
tive application domains where cross-database integration
of records is not a goal, such issues are less of a concern.
To control the proper handling of the various kinds of inte-
grated data, the IDDF tracks the data type of each variable;
the primitive types free text and enumeration can be over-
laid with an open set of other (semantic) types, which are
defined dynamically in the IDDF schema (that is, through
the DTL) and typically apply to a group of related Notions
rather than to a single one. The TDS web interface, for ex-
ample, has special renderer modules for the semantic types
interlinear glossed text (consisting of aligned morphemic
tiers, a translation, etc.) and phoneme inventory'?

To fully exploit this approach, it should be possible for
Notions (atomic or complex) to be associated with stan-
dard data types or controlled vocabularies. Thus the ISO
language code can be linked to the namespace of the ap-
propriate authority, which provides a controlled vocabulary
shared by other tools; fields conforming to other controlled
vocabularies can be linked to the appropriate “data cate-
gory” registered in the future ISO Data Category Registry
(ISO 12620, 2008; Kemps-Snijders et al., 2008), etc. Other
encoding types such as MIME types, complex structures
like interlinear glossed text, etc., should similarly be re-
ported in a standard way, and/or linked to an appropriate
URI to allow their identification.

In effect, this approach extends the notion of standard data
types beyond simple numeric, text and enumerated types,
to more complex aggregations of data. There still work to
be done in the domain of registering such resource types
(the ISO Data Category Registry is designed to cover only
unitary data types, not hierarchies), but the IDDF can be
positioned to utilize such advances when they occur.

4. The generic user interface

The rich structure of the IDDF has made it possible to de-
velop a generic data browser service for the typological
database domain, available through the TDS server.

The TDS server is divided (somewhat imperfectly, at the
moment) into an Application Programming Interface (API)
and a web interface. While the web interface is closely tied
to the state of today’s web browsers and associated tech-
nology (including JavaScript support, etc.), the API is con-
siderably more stable. By untangling these two better, an
API can be created that provides services to multiple gen-
erations of other tools.

12The phoneme inventory type triggers a specific table-based
rendering of a full or partial phoneme inventory.

The data browser is generic, in the sense that it does not
incorporate schema or data information about any of the
component databases; all such information resides in the
IDDF. The browser is limited, however, by the kind of data
models and displayable objects one expects to find in typo-
logical databases. Much of the data in typological databases
can be displayed as tables of short values, and therefore
such tables are prominent in the browser interface. There
are special provisions for presenting interlinear glossed text
and tables of phonemic inventories, and a mapping module
for displaying data values at the geographic location of the
language in question. On the other hand, there is currently
no provision for displaying video streams, or (more impor-
tantly) any provision for managing data aligned to particu-
lar portions of a video stream.

While more such display modules can be developed as nec-
essary, the browser remains generic only in the limited con-
text of the intended application domain. For very different
kinds of resources (such as experimental measurements,
corpora, annotated multimedia data, etc.), one can imag-
ine a completely different data browser that is suited to the
structure of that application domain. The IDDF itself can
encapsulate a wide variety of such formats.

The structure of the IDDF also makes partial compliance
possible: An IDDF-aware tool, for example, could extract
and manipulate interlinear glossed text from a larger re-
source whose full structure is not supported by the tool.
Finally, it must be acknowledged that the TDS interface
(and probably any conceivable generic equivalent) is not
as effective in presenting data as the best custom-built ty-
pological database interfaces; but it is more than sufficient
for providing operability of the data, and other generic
browsers over the IDDF data could undoubtedly do even
better. In any event, several of the component databases of
the TDS had no autonomous interface at all, or only a very
primitive one; and the TDS interface is immensely more
effective than these.

5. The IDDF in broader context

The issues we have discussed are not new, of course. We
have already mentioned OAIS, the Open Archival Informa-
tion System Reference Model (ISO 14721, 2003), which
provides definitions of terms related to data archiving and
defines roles and responsibilities in the contect of a func-
tional model. The OAIS document discusses in some detail
the requirement that archived resources should be indepen-
dently understandable to their target community of users,
and also acknowledges the issue of operability, mention-
ing that the native user interface sometimes encodes infor-
mation essential for its understandability and noting that
“maintaining Content Information-specific software over
the Long Term has not yet been proven cost effective due
to the narrow application of such software.” In this context,
our approach can be seen as a way to achieve an economy of
scale, by transferring the burden of operability to domain-
wide generic tools which manage the generic IDDF format.
This will reduce the burden of maintaining operability in a
very scalable way, and will hopefully prove to be acceptably
cost-effective. Whether this expectation will be realized can
only be determined in the long term.

The OAIS also devotes attention to issues of archiving for
the Long Term, defined as a period long enough to raise is-
sues of adapting to new technology or a changing user com-
munity. The latter issue, of a changing user community, is
not one we address directly; our user-oriented documenta-
tion is intended to make data independently understandable
to present-day linguists, not future ones. However, there is
sufficient creativity and variation in today’s linguistic the-
ories that even for understandability by contemporary lin-
guists, they must be documented in some detail. Thus the
documentation that is necessary today will serve as a good
basis for understandability in the future.

Mapping a database to IDDF format requires manual en-
richment of the resource with metadata that cannot be au-
tomatically automatically computed from its schema. Typ-
ically, the creators or maintainers of the original resource
are asked to provide supplementary information (concern-
ing both formal and user-oriented metadata) that is not
embedded in the native data dump. While this is neces-
sary if the resource is to be independently understandable
(and is therefore indispensable to real data preservation),
it means that the approach is applicable only to data of
sufficient value to merit this sort of intervention. For very
large-scale data collection projects, this kind of attention to
each incoming resource might well be impossible. In such
cases, the IDDF architecture can still support operability at
alower level, comparable with that provided by present-day
solutions: The resource, along with whatever documenta-
tion is available, is imported in a form that simply mirrors
the relational structure of the original database. Such data
cannot be rendered in the most appropriate way, but can
be browsed and manipulated at the relational table level by
suitable generic software. This gives a level of functionality
equivalent to viewing a database with a DBMS administra-
tion tool.

For large-scale data integration, then, the IDDF “dumbs
down” to a level of functionality comparable to that pro-
vided by some existing large-scale archiving solutions. For
example, (Heuscher et al., 2004) addresses the task of
archiving the records of the Swiss Federal Administration,
which are reported to be growing at a rate of some twenty
terabytes per year. The STARD project achieves “software-
invariant” archiving of relational databases via transforma-
tion, at time of import, to a consensus SQL model (SQL-3).
“On principle, functionality (i.e. software, hardware) is not
archived” (Heuscher et al., 2004, p. 1). Archived data can be
browsed at the relational table level by reloading into a con-
forming DBMS. The Chronos system (Brandl and Keller-
Marxer, 2007) maintains data in its original dump format
and provides low-level user access, again at the level of
browsing the relational structure and tables, by supporting
“on-the-fly migration” from an ever-growing collection of
dump formats. This approach, while allowing archives to
be maintained on a very large scale, does not provide high-
level operability, especially for complex data of the type
we have been concerned with. The IDDF architecture al-
lows higher levels of operability to be achieved where this
is practical, but can be (under)utilized to yield low-level op-
erability for large volumes of complex data.

Roles and responsibilities

The architecture described relies on software support at two
levels: On the input side, there must be tools to support the
creation of IDDF documents. On the access side, there must
be a generic data browser for any supported application do-
main. The two levels of tools have different maintenance
requirements:

Once a resource has been mapped to the IDDF format,
input-side software is not needed for its continued oper-
ability (unless, of course, the original resource changes and
needs to be re-imported). An archive that stores resources in
IDDF format need only ensure the continuous availability
of appropriate data browsers on the access side. As such
browsers become outdated or unmaintainable, they must
be replaced by new IDDF-aware browsers with analogous
functionality.

For IDDF-based archiving to be practical, however, suit-
able conversion tools are necessary. In the TDS architec-
ture, IDDF generation is carried out by the TDS import en-
gine, which is driven by DTL schemas and relies on plug-
ins that grant it access to various database and dump for-
mats.'?

In principle, responsibility for maintaining IDDF genera-
tion tools (or using them) need not rest with the archive. A
resource provider can arrange to export their data in IDDF
format, perhaps via a DTL-like transformation module or in
some other way. If the format should become widespread,
one could even expect general-purpose DBMS applications
to support such conversions. For the meantime, however,
archives relying on the IDDF architecture must also address
the problem of bringing data to IDDF form.

6. Conclusions

As we have seen, the problem of sustained operability of
complex resources is ultimately traceable to the limitations
of common storage and interchange formats, which do not
provide sufficient information for generic navigation. By
focusing on the particular (but broad) domain of typologi-
cal databases, we have shown that the rich IDDF architec-
ture can integrate sufficient information for a generic data
browser adapted to the types of data common in typolog-
ical databases. The approach is extensible and suitable for
alternative application domains, as long as there is some
homogeneity in the kind of data that is being collected (re-
gardless of how each resource has chosen to present it). In
effect, the idea of storing resources in a standard format that
can be managed with generic tools is extended to families
of complex formats that represent similar data collections.

A notable aspect of the TDS is its focus not only on meta-
data pertaining to encoding formats and operability, but also
on documentation intended for the end-user. Because of
the abstract nature of linguistic analysis, such user-oriented

3Note that while a diverse collection of such formats must be
specifically supported, there is no need to support long-obsolete
formats. When an archive no longer plans to archive databases
stored on eighty-column punched cards, there will be no need
to maintain support for this format (or the associated hardware).
Once a resource is converted to IDDF, the original format is irrel-
evant to operability.

documentation is essential for the proper interpretation of
high-level resources like typological databases.

More generally, by collecting and centralizing metadata
and documentation, the TDS archival procedure safeguards
the interpretability (and therefore true operability) of the
archived data.

In the context of an archival environment, the IDDF archi-
tecture also solves the problem of versioning and citeability
of evolving resources: Instead requiring resource creators to
maintain multiple versions of their database, an archive can
simply host multiple versions of a resource, and make them
available (and operable) as if they were separate databases.
Hence the archive can provide a versioned, operable mirror
of the database without the need for any versioning provi-
sions in the database schema itself.

In short, the rich IDDF format can support sustainable oper-
ability of complex resources, by allowing a critical mass of
such resources to be managed through generic (but domain-
specific) tools.

7. References

Stefan Brandl and Peter Keller-Marxer. 2007. Long-
term archiving of relational databases with Chronos. In
First International Workshop on Database preservation
(PresDB ’07).

Philipp Cimiano. 2006. Ontology Learning and Popula-
tion from Text. Springer-Verlag, Berlin.

A. Dimitriadis, A. Saulwick, and M. Windhouwer. 2005.
Semantic relations in ontology mediated linguistic data
integration. In Proceedings of the E-MELD Workshop on
Morphosyntactic Annotation and Terminology: Linguis-
tic Ontologies and Data Categories for Linguistic Re-
sources, Cambridge, Massachusetts, July.

A. Dimitriadis, M. Windhouwer, A. Saulwick, R. Goede-
mans, and T. Bir6. 2008. How to integrate databases
without starting a typology war: The Typological
Database System. In S. Musgrave and M. Everaert, ed-
itors, The Use of Databases in Cross-Linguistic Studies.
Mouton de Gruyter. To appear.

Ronen Feldman and James Sanger. 2006. The Text Mining
Handbook. Cambridge University Press.

Stephan Heuscher, Stephan Jirmann, Peter Keller-Marxer,
and Frank Mohle. 2004. Providing authentic long-term
archival access to complex relational data. In Euro-
pean Space Agency Symposium “Ensuring Long-Term
Preservation and Adding Value to Scientific and Tech-
nical Data”.

ISO 12620. 2008. Terminology and other language re-
sources — Data categories — Specification of data cate-
gories and management of a data category registry for
language resources. To appear.

ISO 14721. 2003. Space data and information transfer sys-
tems — Open archival information system — Reference
model.

ISO 639-3. 2007. Codes for the representation of names
of languages — Part 3: Alpha—3 code for comprehensive
coverage of languages.

M. Kemps-Snijders, M. Windhouwer, P. Wittenburg, and
S.E. Wright. 2008. ISOcat: Corralling data categories

in the wild. In Proceedings of the International Con-
ference on Language Resources and Evaluation, Mar-
rakech, Morocco, May.

A. Saulwick, M. Windhouwer, A. Dimitriadis, and
R. Goedemans. 2005. Distributed tasking in ontology
mediated integration of typological databases for linguis-
tic research. In Proceedings of the International Work-
shop on Data Integration and the Semantic Web, Porto,
Portugal, June.

Appendix: A longer IDDF example

We include here a sample IDDF structure. The first part
(<meta/>) integrates data schema and documentation,
while the <data/> element contains the sparse data.

<iddf:warehouse
xmlns:iddf="http://.../ns/iddf">
<iddf:meta>
<iddf:datatype id="UPPC"/>
<iddf:scope id="tds" type="warehouse">
<iddf:label>
Typological Database System
</iddf:label>
<iddf:scope id="pi">
<iddf:label>
Phoneme Inventories
</iddf:label>
<iddf:scope id="SyllTyp" type="database">
<iddf:label>
Syllable Typology Database
</iddf:label>
</iddf:scope>
<iddf:scope id="UPSID" type="database">
<iddf:label>
UCLA Phonological Segment
Inventory Database
</iddf:label>
</iddf:scope>
</iddf:scope>
</iddf:scope>
<iddf:notion id="nl" name="language"
scope="tds" type="root">
<iddf:label>Language</iddf:label>
<iddf:description>
One of the world’s languages
</iddf:description>
<iddf:keys datatype="enum">
<iddf:key>
<iddf:literal>
l-iso-tba
</iddf:literal>
<iddf:label>Aikanã</iddf:label>
</iddf:key>

</iddf:keys>
<iddf:notion ref="n2"/>
<iddf:notion ref="n5"/>
</iddf:notion>
<iddf:notion id="n2" name="identification"
scope="tds" type="top">
<iddf:label>
Language identification
</iddf:label>
<iddf:notion id="n3" name="name"

scope="tds">
<iddf:label>Name</iddf:label>
<iddf:values datatype="free"/>
</iddf:notion>
<iddf:notion id="n4" name="IS0-639-3"
scope="tds" >

<iddf:label>ISO 639-3 code</iddf:label>

<iddf:description
xmlns:xhtml="http://...">
The code as assigned to the
language in the

<xhtml:a href="http://...">
ISO 639-3 standard
</xhtml:a>.

</iddf:description>

<iddf:values datatype="enum">
<iddf:value>
<iddf:literal>tba</iddf:literal>
</iddf:value>

</iddf:values>
</iddf:notion>
</iddf:notion>
<iddf:notion id="nb5" name="inventory"
scope="pi" type="top"
datatype="UPPC">
<iddf:label>
Phoneme inventory
</iddf:label>
<iddf:notion ref="ne6"/>
</iddf:notion>
<iddf:notion id="n6" name="phoneme"
scope="pi" type="root">
<iddf:label>Phoneme</iddf:label>
<iddf:1link type="phoneme" rel="as"
href="http://...owl#segment"/>
<iddf:keys datatype="enum">
<iddf:key>
<iddf:literal>p</iddf:literal>
</iddf:key>
<iddf:key>
<iddf:literal>b</iddf:literal>
</iddf:key>

</iddf:keys>
<iddf:notion id="n7" name="vowel"
scope="SyllTyp">
<iddf:label>Vowel</iddf:label>
<iddf:description>
Is the segment a vowel?
</iddf:description>
<iddf:link type="concept" rel="as"
href="http://...owl#vowel"/>
<iddf:1link type="concept" rel="to"

href="http://...owl#vocalicFeatureNode"/>

<iddf:values datatype="enum">
<iddf:value>
<iddf:literal>+</iddf:literal>
<iddf:description>
The segment is a vowel.
</iddf:description>
</iddf:value>
<iddf:value>
<iddf:literal>-</iddf:literal>
<iddf:description>

The segment is not a vowel.
</iddf:description>
</iddf:value>
</iddf:values>
</iddf:notion>
</iddf:notion>
</iddf:meta>
<iddf:data
xmlns:tds="http://.../ns/iddf/tds"
xmlns:pi="http://.../ns/iddf/pi"

xmlns:SyllTyp="http://.../ns/iddf/Syl1Typ"

>
<tds:language iddf:notion="nl"
key="1-iso-tba"
iddf:srcs="SyllTyp UPSID">
<tds:identification iddf:notion="n2"
iddf:srcs="SyllTyp UPSID">
<tds:name iddf:notion="n3"
iddf:srcs="SyllTyp UPSID">
<iddf:value srcs="SyllTyp">
Wari’ (Tubaréã0)
</iddf:value>
<iddf:value srcs="UPSID">
Huari
</iddf:value>
</tds:name>
<tds:IS0-639-3 iddf:notion="n4"
iddf:srcs="SyllTyp UPSID">
<iddf:value
srcs="SyllTyp UPSID">
tba
</iddf:value>
</tds:IS0-639-3>
</tds:identification>
<pi:inventory iddf:notion="n5"
iddf:srcs="SyllTyp UPSID">
<pi:phoneme iddf:notion="n6" ref="p"
iddf:srcs="SyllTyp UPSID"/>
<pi:phoneme iddf:notion="né6" ref="b"
iddf:srcs="UPSID"/>

</pi:inventory>
</tds:language>

<pi:phoneme iddf:notion="n6" key="p"
iddf:srcs="SyllTyp UPSID">
<SyllTyp:vowel iddf:notion="n7"
iddf:srcs="SyllTyp">
<iddf:value srcs="SyllTyp">

</iddf:value>
</SyllTyp:vowel>
</pi:phoneme>
<pi:phoneme iddf:notion="n6" key="b"
iddf:srcs="SyllTyp UPSID">
<SyllTyp:vowel iddf:notion="n7"
iddf:srcs="SyllTyp">
<iddf:value srcs="SyllTyp">

</iddf:value>
</SyllTyp:vowel>
</pi:phoneme>

</iddf:data>
</iddf:warehouse>

