
LREC 2016 Workshop

Translation Evaluation:
From Fragmented Tools and Data Sets

to an Integrated Ecosystem

PROCEEDINGS

Edited by

Georg Rehm, Aljoscha Burchardt, Ondrej Bojar, Christian Dugast,
Marcello Federico, Josef van Genabith, Barry Haddow, Jan Hajic,

Kim Harris, Philipp Koehn, Matteo Negri, Martin Popel,
Lucia Specia, Marco Turchi, Hans Uszkoreit

ISBN: 978-0-306-40615-7
EAN: 4 003994 155486

24 May 2016

Proceedings of the LREC 2016 Workshop
“Translation evaluation – From fragmented tools and data sets to an integrated ecosystem”

24 May 2016 – Portorož, Slovenia

Edited by Georg Rehm, Aljoscha Burchardt, Ondrej Bojar, Christian Dugast, Marcello Federico, Josef
van Genabith, Barry Haddow, Jan Hajic, Kim Harris, Philipp Koehn, Matteo Negri, Martin Popel,
Lucia Specia, Marco Turchi, Hans Uszkoreit

http://www.cracking-the-language-barrier.eu/mt-eval-workshop-2016/

Acknowledgments: This work has received funding from the EU’s Horizon 2020 research and inno-
vation programme through the contracts CRACKER (grant agreement no.: 645357) and QT21 (grant
agreement no.: 645452).

http://www.cracking-the-language-barrier.eu/mt-eval-workshop-2016/
http://www.cracker-project.eu
http://www.cracking-the-language-barrier.eu
http://qt21.eu

Organising Committee

• Ondrej Bojar, Charles University in Prague, Czech Republic

• Aljoscha Burchardt, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Germany∗

• Christian Dugast, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Germany

• Marcello Federico, Fondazione Bruno Kessler (FBK), Italy

• Josef van Genabith, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Germany

• Barry Haddow, University of Edinburgh, UK

• Jan Hajic, Charles University in Prague, Czech Republic

• Kim Harris, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Germany

• Philipp Koehn, Johns Hopkins University, USA, and University of Edinburgh, UK

• Matteo Negri, Fondazione Bruno Kessler (FBK), Italy

• Martin Popel, Charles University in Prague, Czech Republic

• Georg Rehm, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Germany∗

• Lucia Specia, University of Sheffield, UK

• Marco Turchi, Fondazione Bruno Kessler (FBK), Italy

• Hans Uszkoreit, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Germany

∗: Main editors and chairs of the Organising Committee

ii

Programme Committee

• Nora Aranberri, University of the Basque Country, Spain

• Ondrej Bojar, Charles University in Prague, Czech Republic

• Aljoscha Burchardt, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Germany

• Christian Dugast, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Germany

• Marcello Federico, Fondazione Bruno Kessler (FBK), Italy

• Christian Federmann, Microsoft, USA

• Rosa Gaudio, Higher Functions, Portugal

• Josef van Genabith, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Germany

• Barry Haddow, University of Edinburgh, UK

• Jan Hajic, Charles University in Prague, Czech Republic

• Kim Harris, text&form, Germany

• Matthias Heyn, SDL, Belgium

• Philipp Koehn, Johns Hopkins University, USA, and University of Edinburgh, UK

• Christian Lieske, SAP, Germany

• Lena Marg, Welocalize, UK

• Katrin Marheinecke, text&form, Germany

• Matteo Negri, Fondazione Bruno Kessler (FBK), Italy

• Martin Popel, Charles University in Prague, Czech Republic

• Jörg Porsiel, Volkswagen AG, Germany

• Georg Rehm, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Germany

• Rubén Rodriguez de la Fuente, PayPal, Spain

• Lucia Specia, University of Sheffield, UK

• Marco Turchi, Fondazione Bruno Kessler (FBK), Italy

• Hans Uszkoreit, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Germany

iii

Preface

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam maximus euismod pharetra. Sus-
pendisse tempor arcu urna, non laoreet ipsum maximus vitae. Duis pulvinar elit urna, a venenatis odio
sodales nec. Suspendisse vel tortor lacus. Nullam venenatis ex neque. Integer id elit nec leo varius
sollicitudin a at purus. Mauris placerat eros eget mauris commodo faucibus. Mauris tincidunt ultri-
ces sodales. Ut at lorem in diam malesuada condimentum. Cras hendrerit at ligula sit amet finibus.
Pellentesque pulvinar tincidunt massa, a vehicula sem aliquet eu. Donec ultricies molestie neque quis
faucibus. Mauris suscipit nisl purus. Maecenas in convallis libero, eget aliquam ipsum. Suspendisse
quis accumsan erat, sit amet pharetra purus. Quisque id dapibus diam.

Cras et enim et tellus rutrum egestas. Proin rutrum dolor eget mauris semper tempor. Praesent sit
amet scelerisque metus. Vestibulum elementum neque non euismod iaculis. Pellentesque id pretium
quam. Suspendisse vitae magna at diam luctus laoreet. Sed volutpat viverra justo, a efficitur ante
ultrices non. Phasellus tincidunt urna quis pellentesque hendrerit. Morbi in dictum lorem, id iaculis
nunc. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Aenean
lobortis malesuada ligula, a blandit leo dignissim sit amet. Maecenas tristique suscipit feugiat. Sed et
elit est.

Nunc malesuada est et elit tristique, ac finibus sem auctor. Maecenas sed odio sodales, finibus
neque sed, ultricies nunc. Nullam condimentum condimentum ornare. Mauris pharetra urna lacus, eget
faucibus libero hendrerit sed. Proin id tempor est. Vivamus ac ornare risus. Integer quam ligula, blandit
vitae nisi nec, sagittis porta orci. In sollicitudin metus a lobortis finibus.

Nulla tincidunt lectus non nibh venenatis, eget gravida lacus dignissim. Sed erat velit, venenatis
et purus at, luctus molestie est. In tempor augue vitae posuere aliquam. Aliquam blandit magna eu
cursus sollicitudin. Integer quis justo erat. Pellentesque dignissim neque quis ligula dignissim sem-
per. Aliquam posuere auctor mi sit amet condimentum. Proin maximus libero id ultrices vulputate.
Suspendisse gravida pellentesque odio vitae malesuada. Sed molestie enim ut porttitor condimentum.
Maecenas et massa feugiat, rhoncus odio vitae, fermentum ipsum. Vestibulum ante ipsum primis in
faucibus orci luctus et ultrices posuere cubilia Curae; Morbi nisl nulla, finibus non tempus sed, con-
sectetur quis lacus. Phasellus dignissim interdum nulla, at congue sem euismod in. Donec luctus augue
elementum vestibulum fringilla.

G. Rehm, A. Burchardt, O. Bojar, C. Dugast, M. Federico, J. van Genabith, B. Haddow, J. Hajic,
K. Harris, P. Koehn, M. Negri, M. Popel, L. Specia, M. Turchi, H. Uszkoreit May 2016

iv

Programme

Opening Session
09.00 – 09.10 Introduction
09.10 – 09.50 Author

Title (invited talk)
09.50 – 10.30 Author

Title

Session Title
11.00 – 11.45 Author

Title
11.45 – 12.30 Author

Title
12.30 – 12.45 Author

Title
12.45 – 13.00 Author

Title

Session Title
14.30 – 15.15 Author

Title
15.15 – 16.00 Author

Title

Closing Session
16.30 – 17.15 Author

Title
17.15 Discussion

v

Table of Contents

Managing Language Resources and Tools Using a Hierarchy of Annotation Schemas
Dan Cristea, Ionut Pistol . 1

Sustainable Operability: Keeping Complex Resources Alive
Menzo Windhouwera, Alexis Dimitriadisa . 9

vi

Managing Language Resources and Tools using a Hierarchy of Annotation
Schemas

Dan Cristea

Faculty of Computer Science, University “Al. I. Cuza” of

Iaşi, Romania

Institute for Computer Science, Romanian Academy, Iaşi,

Romania

dcristea@info.uaic.ro

Ionut Cristian Pistol

Faculty of Computer Science, University “Al. I. Cuza” of

Iaşi, Romania

ipistol@info.uaic.ro

Abstract

This paper describes the concept and usage of ALPE (Automated Linguistic Processing Environment) a system designed to facilitate
the management and deployment of large and dynamic collections of linguistic resources and tools. ALPE can build linguistic
processing chains involving the annotation formats and the tools integrated into a hierarchical structure. The particularities and
advantages of integrating ALPE in a project involving the development and usage of multiple linguistic resources are the main topics
of this paper.

1. Introduction

Making sure that corpora, resources and tools are reusable
in different contexts than that of the originating project is
one of the recent main topics of interest in the Natural
Language Processing community. Re-using a resource
initially developed for a specific project usually fails for
one of two reasons: either the resource is not enough
documented (the format is not known to the re-user), or
the resource is not directly accessible (the location of the
resource is not known to the re-user). Making sure a
project’s results are well organized and accessible ensures
a better impact and a longer lasting significance, as more
people will be able to use the developed resources and
tools.
One of the latest developments in NLP, and one which
promises to have a significant impact for future linguistic
processing systems, is the emerging of linguistic
annotation meta-systems, which make use of existing
processing tools and implement some sort of processing
architecture, pipelined or otherwise.
In this paper we describe ALPE, a system offering a new
perspective to the task of exploiting NLP meta-systems,
by helping a community of users to have an integrated
look at a whole range of tools that are able to
communicate on the basis of common formats.
For annotated linguistic resources several standardization
efforts have been made, such as XCES 1 and TEI 2 .
However, the proposed standardizations are not
universally accepted, most research projects developing
resources according to their own described formats. More
recent developments, such as GOLD3, propose unification
methods for the various annotation formats. Due to such
methods one can easily transform the name space of a
corpus in order to make it compatible to her/his own
targets. Several systems tried to facilitate the access to
existing processing tools and to ease their usage. The
more prominent ones are GATE 4 and UIMA 5 . Both
systems make easier the access to a set of independently
developed NLP tools which are already parts of an

1 www.xml-ces.org/
2 www.tei-c.org/
3 http://www.linguistics-ontology.org/gold.html
4 http://www.gate.ac.uk/
5 www.research.ibm.com/UIMA/

environment offering means to create and use processing
chains intended to add linguistic metadata to an input
corpus. GATE (Cunningham et al., 2002, Cunningham et
al., 2003) is a versatile environment for building and
deploying NLP software and resources, allowing for the
integration of a large amount of built-ins in new
processing pipelines that receive as input a single
document or corpus. UIMA (Ferrucci and Lally, 2004)
offers the same general functionalities as GATE, but once
a processing module is integrated in UIMA it can be used
in any further chains without any modifications (GATE
requires wrappers to be written to allow two new modules
to be connected in a chain). Since the appearance of
UIMA, the GATE developers have made available a
module that allows GATE and UIMA processing modules
to be interchangeable, basically merging the “pool” of
modules available.
ALPE, a new NLP meta-system still in development,
allows a user, even with very limited programming
capabilities, to automatically exploit already walked-on
processing paths or to configure new ones on-the-spot, by
exploiting the annotation schemas at intermediate steps.
ALPE is based on the hierarchy of annotation schemas
described in (Cristea and Butnariu, 2004). In this model,
XML annotation schemas are nodes in a directed acyclic
graph, and the hierarchical links are subsumption
relations between schemas. In (Cristea et al., 2006) is
described how the graph may be augmented with
processing power by marking edges linking parent nodes
to daughter nodes with processors, each realising an
elementary NLP step.
Section two of this paper presents the theory behind the
ALPE system, and section three describes the significant
features of ALPE, relevant in the context of a large scale
research project, employing multiple layers of annotation
schemas and various tools. Section four makes a brief
comparison between ALPE and the two most prominent
NLP meta-systems (GATE and UIMA). The conclusions,
as well as the further planned developments are described
in section five.

2. The Underlying Model

2.1 Linguistic Metadata Organised in a Hierarchy
We base our model on the direct acyclic graph (DAG)
described in (Cristea and Butnariu, 2002), which

D. Cristea, I. Pistol: Managing LRs and Tools Using a Hierarchy of Annotation Schemas 1

Proceedings of the LREC 2016 Workshop “Translation evaluation – From fragmented tools and data sets
to an integrated ecosystem”, Georg Rehm, Aljoscha Burchardt et al. (eds.)

configures the metadata of linguistic annotation in a
hierarchy of XML schemas. Nodes of the graph are
distinct XML annotation schemas, while edges are
hierarchical relations between schemas. By interacting
with the graph, a user can modify it from an initial trivial
shape, which includes just one empty annotation schema,
up to a huge graph accommodating a diversity of
annotation and processing needs. If there is an oriented
edge linking a node A with a node B in the hierarchy (we
will say also that A subsumes B or that B is a descendant
of A) then the following conditions hold simultaneously:

• any tag-name of A is also in B;
• any attribute in the list of attributes of a tag-name

in A is also in the list of attributes of the same
tag-name of B.

As such, a hierarchical relation between a node A and one
descendant B describes B as an annotation schema which
is more informative than A. In general, either B has at
least one tag-name which is not in A, and/or there is at
least one tag-name in B such that at least one attribute in
its list of attributes is not in the list of attributes of the
homonymous tag-name in A. We will agree to use the
term path in this DAG with its meaning from the support
graph, i.e. a path between the nodes A and B in the graph
is the sequence of adjacent edges, irrespective of their
orientation, which links nodes A and B. As we will see
later, the way this graph is being built triggers its property
of being connected. This means that, if edges are seen
undirected, there is always at least one path linking any
two nodes.

2.2 The Hierarchy Augmented with Processing Power
In NLP, the needs for reusability of modules and the
language and application independence impose the reuse
of specific modules in configurable architectures. In order
for the modules to be interconnectable, their inputs and
outputs must observe the constraints expressed as XML
schemas.
When processes are placed on the edges of the graph of
linguistic metadata, the hierarchy of annotation schemas
becomes a graph of interconnecting modules. More
precisely, if a node A is placed above a node B in the
hierarchy, there should be a process which takes as input a
file observing the restrictions imposed by the schema A
and produces as output a file observing the restrictions
imposed by the schema B.
In (Cristea et al., 2006) a graph (or hierarchy) of
annotation schemas on which processing modules have
been marked on edges is called augmented with
processing power (or simply, augmented). The null
process, marked Ø, is a module that leaves an input file
unmodified.

2.3 Building the Hierarchy
Three hierarchy building operations are introduced in
(Cristea et al., 2006): initialize-graph, classify-file and
integrate-process. In this section we briefly present them.
The initialize-hierarchy operation receives no input and
outputs a trivial hierarchy formed by a ROOT node
(representing the empty annotation schema). Once the
graph is initialised, its nodes and edges are contributed by
classifying documents in the hierarchy or manually.
The classify-file operation takes an existing hierarchy and
a document marked with an XML metadata and classifies
the schema of the document within the hierarchy. The

operation results in a (possibly) updated hierarchy and the
location of the input schema as a node of the hierarchy. If
the input document fully complies with a schema
described by a node of the hierarchy, the latter remains
unchanged and the output indicates this found node;
otherwise a new node, corresponding to the annotation
schema of the input document, is inserted in the proper
place within the hierarchy.
Integrate-process is an operation aiming to properly
attach processes to the edges of a hierarchy of annotation
schemas, mainly by labelling edges with processors, but
also by adding nodes and edges and labelling the
connecting edges.
Apart from these basic operations that allow building a
hierarchy from scratch or modifying an existing one by
exploiting the annotation incorporated in files, a graphical
interface allows the user to also define new nodes
manually, which ALPE will place at proper places in the
hierarchy automatically. But building a hierarchy can be
made independent of any explicit interaction with the
system by a user. It is still not unusual that an interaction
results also in an augmentation of an existing hierarchy
with nodes, corresponding to user’s input and/or output
file. Through multiple interactions, an initial minimal
hierarchy which is accessed by a community of users can
thus be developed.

2.4 Operations on the Augmented Graph
Three main operations can be supported by the Cristea et
al. (Cristea et al., 2006) model.
If an edge linking a node A to a node B (therefore B being
a descendant of A) is marked with a process p, it is said
that A pipelines to B by p. Equally, when a file
corresponding to the schema A is pipelined to B by p, it
will be transformed by the process p onto a file that
corresponds to the restrictions imposed by the schema B.
This arises in augmenting the annotation of the input file
(observing the restrictions of the schema A) with new
information, as described by schema B.
For any two nodes A and B of the graph, such that B is a
descendant of A, it is said that B can be simplified to A.
When a file corresponding to the schema B is simplified to
A, it will lose all annotations except those imposed by the
schema A. Practically, a simplification is the opposite of a
(series of) pipeline(s) operation(s).
The merge operation can be defined in nodes pointed by
more than one edge on the hierarchical graph. It is not
unusual that the edges pointing to the same node are
labelled by empty processors. The merge operation
applied to files corresponding to parent nodes combines
the different annotations contributed by these nodes onto
one single file corresponding to the schema of the
emerging node.
With these operations, the graph augmented with
processing power is useful in two ways: for goal-driven,
dynamic configuration of processing architectures and for
transforming metadata attached to documents. Automatic
configuration of a processing architecture is a result of a
navigation process within the augmented graph between a
start node and a destination node, the resulted processes
being combinations of branching pipelines (serial
simplifications, processing and merges). In terms of
processing, the difference with respect to GATE and
UIMA, both allowing only pipeline processing in which
the whole output of the preceding processor is given as

D. Cristea, I. Pistol: Managing LRs and Tools Using a Hierarchy of Annotation Schemas 2

Proceedings of the LREC 2016 Workshop “Translation evaluation – From fragmented tools and data sets
to an integrated ecosystem”, Georg Rehm, Aljoscha Burchardt et al. (eds.)

input to the next processor, is that in the described model
the required processing may result in a combination of
branching pipelines. This is due to the introduction of the
merge operation which is able to combine two different
annotations on the same file. Once the process is
computed, then it can be applied on an input file
displaying a certain metadata in order to produce an
output file with the metadata changed as intended. These
two files comply with the restrictions encoded by the start
node and, respectively, the destination node of the
hierarchy.
Since the graph is connected, there should always be at
least one path connecting these two nodes. The paths
found are made up of oriented edges and, depending on
whether the orientation of the edges is the same as that of
the path or not, we will have pipeline operations or
simplification operations. A flow is a combination of
paths between the start and the destination node that
configures the processing which transforms any file
observing the specifications of the start node (schema)
onto a file observing the specifications of the destination
node (schema).

Once the entry and exit points in the hierarchy have been
determined and processing flows (combination of paths in
the graph) have been devised, all the rest is done by the
hierarchy augmented with the processing power in the
manner described above. This way, the processing needed
to arrive from the input to the output is computed by the
hierarchy as sequences of serial and parallel processing
steps, each of them supported in the hierarchy by means
of specialized modules. Then the process itself is
launched on the input file.

2.5 ALPE

ALPE is a system implementing the described model.
Besides implementing all the previously described
features, ALPE brings several additions.

The core modules
ALPE includes 11 core modules, used in any ALPE
hierarchy (the hierarchy augmented with processing
power, as described) but not attached to any edge. These
core modules perform built-in tasks such as language

base

tok

par seg

lemma

morpho

pos

sin

chunks

form

wsd

full

Figure 1: The ALPE core hierarchy

D. Cristea, I. Pistol: Managing LRs and Tools Using a Hierarchy of Annotation Schemas 3

Proceedings of the LREC 2016 Workshop “Translation evaluation – From fragmented tools and data sets
to an integrated ecosystem”, Georg Rehm, Aljoscha Burchardt et al. (eds.)

identification, but also implement the basic operations in
the hierarchy (among others, flow computation, merging
and simplifying). These core modules are used in any
ALPE hierarchy and are not replaceable by user tools.
They ensure that any ALPE hierarchy implements the
basic behaviour, as described in this paper.

The core hierarchy
One of the main problems in developing a new NLP
system is selecting a relevant and useful annotation
format for the developed resources. Establishing a
hierarchy of generally used XML metadata is not one of
ALPE’s main purposes, but having most annotated
documents adhere to some common format brings
obvious benefits both to the developer of new NLP
software and to the user who would have an easier time
finding the tools required for a particular annotation task.
As base for any new ALPE hierarchy is offered a core
hierarchy, with 12 annotation schemas ranging from basic
XML format to a full XCES (Ide et al., 2000) linguistic
annotation specification6. The intermediate formats are
designed to conform to specific requirements for
document annotation, such as tokenization, POS-tagging,
NP-chunking, etc. as well as combination of these
markings. Figure 1 shows the ALPE core hierarchy. All
nodes are subsets of the XCES standard for annotated data,
and the subsumption relation is observed between all pairs
of nodes linked through an edge.
The 12 nodes in figure 1 correspond to XML annotation
schemas as follows:

• base: subset of XCESAna including just cesAna
tags – corresponding to a basic XML format;

• par: adds the par tag to the parent node –
corresponding to an XML with marked
paragraphs;

• seg: adds the s tag to the parent node –
corresponding to an XML with marked
sentences;

• form: a merge of the subsuming formats –
corresponding to an XML with marked
formatting (paragraphs and sentences)
information;

• tok: adds the tok and orth tags to the parent node
– corresponding to a tokenized text;

• pos: adds the ctag tag to the parent node –
corresponding to a pos-tagged text;

• lemma: adds the base tag to the parent node –
corresponding to a lemmatized text;

• chunks: adds the chunk and chunklist tags to the
parent node – corresponding to a (Noun/Verb)
phrase-chunked text;

• morpho: adds the msd tag to the parent node –
corresponding to an XML displaying
morphological metadata;

• wsd: adds a wsd tag for semantic
disambiguation;

• sin: merges the parent nodes – corresponding to
an XML displaying full syntactic information;

• full: merges all parent nodes.
The purpose of the core hierarchy is to offer both a
starting point to any new hierarchy as well as anchors for
any new linguistic annotation formats that a user would
like to include. When the XML formats of the user’s input

6 http://www.cs.vassar.edu/XCES/dtd/xcesAna.dtd

and output files are not identical with schemas belonging
to the hierarchy (for instance, due to differences in the
tags name space or to configurations of attributes that
convey in different ways the same information) then the
user has to provide convertors (wrappers) able to
accommodate his notations with those corresponding to
nodes of the hierarchy.

The user’s needs and the selection of flows

The ALPE augmented hierarchy can be used in many
ways. Suppose a user wants to process an XML file from
one input format to some output format. In principle, any
such processing task involves a transformation by some
module capable to receive the input format and to output
the required final format. The ALPE philosophy details
such a processing task in relation with the pair of
input-output schemas by establishing the way these
schemas interrelate from the point of view of the
subsumption relation. Two cases can be evidenced: either
the two schemas do observe a subsumption relation or not.
When they do, then the node corresponding to the input
file can be connected through a direct descending or
ascending edge to the one corresponding to the output file.
It will be descending if the output schema results from the
input schema through some adds, and it will be ascending
if in order to obtain the output, simplification applied to
the input are required. When the two schemas are not in a
subsumption relation, then there should be a node such
that either both are subsumed by it, or both subsume it.
ALPE comes with a core hierarchy whose nodes act as a
grid of fixed bench-marks with respect to which the
locations of the input and output schemas are set out.
When the pair of users’ schemas matches two nodes of the
core hierarchy, then processing can be drawn in terms of
known (built-in) interconnected modules. When a match
(modulo, as noticed above, the XML elements name space
and/or differences in configurations of attributes still
conveying the same information) of one or even both of
user’s schemas against nodes of the hierarchy is not
possible, then the non-matching schemas should be seen
as new nodes of the hierarchy. In this case it is the user’s
responsibility to locate also the processes which will be
assigned to the new edges which will interconnect the
new nodes onto the hierarchy.
ALPE designs a solution to the user’s problem by first
computing all possible chains of edges which link the
input schema to the output schema and, if needed,
executing them.
Each computed flow is characterized by a set of features.
These features include properties such as: flow length
(defined as number of processing steps involved), cost
(for instance, if processing involving one or more
modules presupposes financial costs), the estimated
precision of execution, and the estimated time of
execution. The user can then select and run the flow most
suitable to his needs.

3. Features

In this section we will describe a set of features
implemented in ALPE often wished for in environments
working with linguistic resources and tools. We will see
how these features emerge from the model described
above. Many of these features are key elements of the

D. Cristea, I. Pistol: Managing LRs and Tools Using a Hierarchy of Annotation Schemas 4

Proceedings of the LREC 2016 Workshop “Translation evaluation – From fragmented tools and data sets
to an integrated ecosystem”, Georg Rehm, Aljoscha Burchardt et al. (eds.)

future European linguistic infrastructure, as seen by
CLARIN7.

Multilinguality
In modern NLP, algorithms are separated from linguistic
details. This way, a module designed to perform a specific
task can be put to work on any language if fuelled with
appropriate language resources. This is the case, for
instance, with POS-taggers (see, for instance, TNT
(Brants, 2000)), which are powered by specific language
models (frequency of n-grams of POS tags). A syntactic
parser should be powered by the grammar of a language to
be effective in parsing sentences of that language. A
shallow parser, which usually implements an abstract
automata machinery, could recognize noun phases of one
language if powered by a resource consisting of a set of
regular expressions specific to that language.
To implement multilinguality within the proposed model
means to map the edges of the augmented graph on a
collection of repositories of configuring resources
(language models, sets of grammar rules, regular
expressions, etc.) which are specific to different
languages. This can be achieved if the edges of the graph
labelled with processes are indexed with indices
corresponding to languages. This way, to each particular

7 http://www.clarin.eu

language an instance of the graph can be generated, in
which all edges keep one and the same index – the one
corresponding to that particular language. This means that
all processors of that particular language should access
the configuring resources specific to that language in
order for the hierarchy to work properly. For instance, in
the graph instance of language Lx, the edge corresponding
to a POS-tagger has as index Lx, meaning that it accesses
a configuring resource file that is specific to language Lx
(that language model).
It is a fact that different languages have different sets of
processing tools developed, English being perhaps the
richer, presently. Ideally, the blame for the lack of a tool in
a specific language should be put on the lack of the
corresponding configuring resource, once a language
independent processing module is available for that task.
It is also the case that differences exist in processing
chains among languages. For instance one language could
have a combined POS-tagger and lemmatizer while
another one realizes these operations independently,
pipelining a POS-tagger with a lemmatization module.
These differences are reflected in particular instances of
sections of the graph, which, although reproduce the same
set of nodes, do not allow but for certain edges linking
them. The missing edges inhibit pipelining operations

Figure 2: Computation of different flows for specific languages

tok

 POS lemma

POS+lemma

L1

POS tagger
(L1)

Lemmatizer
(L1)

Ø Ø

tok

lemma

POS+lemma

L2

Lemmatizer
(L2)

POS tagger
(L2)

tok

L3

POS+lemma

POS tagger+lemmatizer
(L3)

POS tagger
(L2)

Lemmatizer
(L1 + L2)

POS tagger
(L1)

tok

 POS

Tagger
(L3)

 lemma

POS+lemma

Ø

L1+L2+L3

D. Cristea, I. Pistol: Managing LRs and Tools Using a Hierarchy of Annotation Schemas 5

Proceedings of the LREC 2016 Workshop “Translation evaluation – From fragmented tools and data sets
to an integrated ecosystem”, Georg Rehm, Aljoscha Burchardt et al. (eds.)

along them, but are suited for simplification operations.
In figure 2 is given a simple example of how ALPE
handles multiple languages integrated in the same
hierarchy. The first hierarchy (marked as L1+L2+L3 in
the figure) has four nodes (annotation schemas):

• tok: XML which marks lexical tokens;
• POS: XML marking tokens and their

part-of-speech;
• lemma: XML marking tokens and their lemmas;
• POS+lemma: XML with tokens, POS and

lemma information.
These four nodes correspond to simple processing stages
for linguistically annotated documents. The ALPE
hierarchy fragment representation (shown on the
L1+L2+L3 section of Figure 2) indicates the subsuming
relations between the respective nodes and the attached
tools. For each tool, in parenthesis, it is indicated the
languages for which the tool is available. In the sections
marked L1, L2 and L3, respectively, of Figure 2 are
sketched the corresponding instantiations of this
sub-hierarchy for the three languages.
The user can provide an input document (XML with
marked lexical tokens) and specify the required output
format as being the final node (suppose POS+lemma).
ALPE determines the language of the input document (as
being L1, L2 or L3). If the input document belongs to the
language L1, the computed flow will include only tools
available for that language. Thus the only possible flow
will use the POS tagger and the Lemmatizer tools, then
merge their results into the output format. For the second
language the flow will use a different POS tagger tool,
one that requires as input a file corresponding to the
lemma node. So the computed flow will run first the
Lemmatizer, then the POS tagger on the result. For the
third language, a tool is available that can directly
annotate an input file in the tok format up to the required
output.
We can look at the ALPE hierarchy as having three layers,
one for each language. The three language specific
hierarchies can look completely different for each
language, but are still able to compute and run the same
flows as the combining hierarchy. The three layers are
aligned by nodes which display the same XML structure.

Manual versus automatic annotation
We have seen how automatic annotation is supported by
the augmented graph. But how can manual annotation be
accommodated within this approach?
Usually, in order to train processing modules in NLP,
developers use manually annotated corpora. To create
such corpora, they make use of annotation tools
configured to help placing XML elements over a text, and
to decorate them with attributes and values. As such, if
annotation tools do, although in a different way, the same
jobs which can be performed by processing modules, it is
most convenient to associate them with edges in the graph
in the same way in which processing modules are
associated with these edges.
Meanwhile, it is clear that manual annotation cannot be
chained in complex processing architectures in the same
way in which automatic annotation can. In order to
differentiate between automatic and manual processes, as
encumbered by pairs of schemas observing the
subsumtion relation, it results that edges should have
facets, for instance AUT and MAN. Under the AUT facet

of a POS-tagging edge, for instance, the automatic
POS-tagger should be placed, while under the MAN facet
– the POS-tagging annotation tool should be placed.
The configuration files of these tools can usually be
separated from the tools themselves. We can say that the
corresponding configuration files particularise the
annotation tools, which label edges of the graph, in the
same way in which language specific resources
particularise processing modules.

IPR and cost issues
Intellectual property rights can be attached to documents
and modules as access rights. Only a user whose profile
corresponds to the IPR profile of a resource/tool can have
access to that file/service. As a result, while computation
of processing chains within the hierarchy is open to
anybody, the actual access to the dynamically computed
architectures could be banned to users which do not
correspond to certain IPR profiles of certain component
modules or resources they need.
More than that, some price policies can be easily
implemented within the model. For instance, one can
imagine that the computation of a flow results also in a
computation of a price, depending on particular fees the
chained Web servers charge for their services.
Out of this, it is also imaginable the graph as including
more than one edge between the same two nodes in the
hierarchy. This can happen when different modules
performing the same task are reported by different
contributors. When these modules charge fees for their
services, it is foreseeable also an optimization calculus
with respect to the overall price over the set of paths that
can be computed for a required processing.

Facing the diversity of annotation styles
It is a fact that, today, a huge diversity of annotation
variants circulates and is being used in diverse research
communities. It is far from us to belief that a Procustean
Bed policy could ever be imposed in the CL or NLP
community, that would aim for a strict adoption of
standards for the annotated resources. On the other hand,
it is also true that efforts towards standardization are
continually being made (see the TEI, XCES, ISLE, etc.
initiatives). Moreover, Semantic Web, with its
tremendous need for interconnection and integration of
resources and applications on communicating
environments, boosts vividly the appeal for
standardization. It is therefore foreseeable that more and
more designers will adopt recognized standards, in order
to allow easy interoperability of their applications. A
realistic view on the matter would bring into the focus the
standards while also providing means for users to interact
with the system even if they do not rigorously comply
with the standards.
We have seen already that, by classification, any schema
could be placed in the hierarchy. Of course, classification
could increase in an uncontrollable way the number of
nodes of the hierarchy. The proliferation could be caused
not so much by the semantic diversity of the annotations,
as by the differences in name spaces (names of tags and
attributes).
Technically, this can be achieved by temporarily creating
links between the new schema classified by the hierarchy,
as a new node, and its corresponding schema in the
hierarchy. Processing along such a link is different than

D. Cristea, I. Pistol: Managing LRs and Tools Using a Hierarchy of Annotation Schemas 6

Proceedings of the LREC 2016 Workshop “Translation evaluation – From fragmented tools and data sets
to an integrated ecosystem”, Georg Rehm, Aljoscha Burchardt et al. (eds.)

the usual behaviour associated to the edges of the graph
and is specific to wrappers. It describes a translation
process, in which the annotation is not enriched, but rather
names of XML elements and attributes are changed.
Ideally, the processing abilities of the hierarchy should
include also the capability to automatically discover
wrapping procedures. This task is not trivial since it
would require that the hierarchy “understands” the
intentions hidden behind the annotation, displaying, this
way, some kind of semantic processing capabilities which
is not easy to implement. However, recent initiatives as
GOLD make us believe that significant steps forward in
this direction are near us.

4. Evaluation

4.1 ALPE vs. GATE and UIMA

In this section we will compare functionalities of ALPE
with those of GATE and UIMA, systems which can give
very similar results with our.
First of all, ALPE is intended primarily to facilitate the
user’s interaction with the system, allowing for an
programming non-expert to integrate resources and tools.
As a standalone linguistic processing environment, the
user is presented with a visual representation of a
hierarchy of annotation formats and has basically three
main choices: s/he can add a new resource to the hierarchy
(for example enabling an already integrated processing
module to work for another language by adding a
corresponding language model), add a new processing
tool (attached to an existing edge, or attached to a newly
created edge) or compute and use a processing chain
(providing the input file and selecting the output format).
GATE offers a user interface adequate for creating and
using processing chains. Chains have to be built manually
and presuppose an intimate knowledge of the system.
UIMA is even more oriented to the NLP professional,
offering little in terms of visual user interaction. A direct
comparison that would put on stage quantitative
evaluations is difficult to be made for these kinds of
systems. Perhaps a better prospect would be a qualitative
comparison performed by a significant pool of users,
providers as well as consumers of language resources and
tools. In the following, we make just an estimative
comparison, but a qualitative evaluation versus human
performance is planned.
Every one of the three main functionalities (adding a new
resource, adding a new tool, and computing and using a
processing chain) is easier to perform in ALPE. Both
UIMA and GATE require some formal description to be
written for each new resource integrated into the system,
while ALPE generates these formal descriptions
automatically. When adding a new processing tool, ALPE
has much more permissive restrictions with regard to
what tool can be integrated: it basically has to be either a
webservice or a command line, executable under
Windows or Linux. GATE allows the user to integrate at
least Java and Perl based tools, and this is done by writing
some dedicated code, a task which is however above the
capabilities of some users. UIMA is even more restrictive,
allowing only C++ based tools to be integrated, and only
after significant implementations and changes to the
original code. However, an extension allowing modified
Perl, Python and TCL modules to be integrated is

available.
An evident advantage of ALPE over both GATE and
UIMA is that the processing chains in ALPE are
automatically computed, therefore requiring no human
intervention. Moreover, they can be created between any
two formats defined in the hierarchy (providing the
modules decorating the connecting edges are available,
otherwise there are signalled as missing). ALPE deals
with multilinguality, thanks to its core module that
performs language identification for each input file, then
selects to corresponding tools and language resources, if
available. GATE and UIMA are mainly focused on
English (GATE incorporating also modules dedicated to
some other languages), but the user has to make sure to
select the proper modules when designing a processing
chain for a document in other language than English.
Let us consider the example of a use-case in which the
user has two processing tools s/he wants to use on the
same input file and to merge the results in an output file.
Using ALPE, this user has to specify the input/output
formats of the modules, then let the system integrate the
tools as arches linking the corresponding nodes in the
hierarchy (in the case when one of both of these formats
are not currently part of the hierarchy, they will become as
such), then input the file and specify the required output
format (node). Using GATE, the user has to implement
the integration of the tools to make them available to the
processing chain building interface, then build and run
two processing chains, one for each tool, then merge the
results outside GATE (since it does not allow parallel
processing and merging of annotations). UIMA performs
this task basically in the same way as GATE, requiring
even more implementation when integrating the new tools,
but allows annotation merging.

4.2 Qualitative evaluation

In order to evaluate ALPE versus human computational
linguistic specialists, we have developed an ALPE
augmented hierarchy configured for a current research
project involving documents in 9 European languages
(Bulgarian, Czech, English, German, Dutch, Maltese,
Polish, Portuguese and Romanian) and using a significant
number of language processing tools8 . All documents
have to be annotated according to 6 main annotation
formats (and 8 optional ones), resulting a significant
hierarchy of standards. This hierarchy is already
implemented and serves as a management and access
facility for the collected documents.
At the time of writing this paper, an ALPE core hierarchy
specific to the mentioned project is implemented for
English and Romanian.

5. Conclusions

We think that the model we propose and its first
implementation, as the ALPE system, encapsulate
different organisational, standardisation and processing
features which make it interesting for the goals of a
project like CLARIN.
In this proposal we have been concerned with the
following features of functionality, also identified as of

8 LT4eL – an FP6 project (www.lt4el.eu)

D. Cristea, I. Pistol: Managing LRs and Tools Using a Hierarchy of Annotation Schemas 7

Proceedings of the LREC 2016 Workshop “Translation evaluation – From fragmented tools and data sets
to an integrated ecosystem”, Georg Rehm, Aljoscha Burchardt et al. (eds.)

primary importance in CLARIN9:
• unique access gate and distributivity: although

distributed in different places, LR and LT could be, in
the vision described in this paper, identified through a
single access gate;

• metadata policy: primary text and speech
documents should be given the possibility to be
accompanied by metadata describing human and/or
automatic annotation over them. The ALPE
conventions allow for the metadata to have a form
which make it easily removable when the primary
raw documents are needed of being recuperated;

• independence of representation: it is clear that the
XML representation adopted by ALPE allows for LR
to be manipulated in such a way as to benefit of the
same treatment irrespective of the particular metadata
conventions;

• quick access: ALPE comes very close to the
objective that CLARIN LR and LT be accessed
instantaneously from all over Europe;

• conversion services: the ALPE approach
incorporates features that allows easy conversion
operations from and onto different representations;

• processing services: the ALPE portal provides
processing services for enrichment and or
simplification of metadata attached to LR;

• versioning: the portal allows manipulation of
different versions of data as well as of the metadata
accompanying the texts;

• multilinguality: the structure allows uniform
treatment of documents in different languages, as
well as of parallel texts;

• IPR issues: the structure provides means of dealing
with IPR.

In this paper we have described a model of dynamical
building of processing architectures based on a hierarchy
of XML schemas and an implementation – called ALPE.
We have argued that ALPE brings some advantages over
other known systems with similar objectives, mainly
coming from a plus in manoeuvrability and complete
automation of the configuring tasks. It is also shown how
ALPE, has brought already significant advantages in the
context of a multilingual research project. In this context
ALPE has automatically configured complex processing
chains involving several modules and documents in
different languages. The features brought by the addition
of an ALPE type hierarchy into a complex project
contribute significantly to acquire multilinguality,
distributivity, versioning of language resources, automatic
and manual annotation, management of IPR and cost
issues, as well as managing diversity of annotation styles,
features that the CLARIN project considers of extreme
importance.
One important further development of ALPE will be a
web-service allowing users to build, configure and use
ALPE hierarchies on the web, either as a limited
password-protected resource or a global linguistic
resources collection. This type of hierarchy is able to
manage multilingual resources as well as resources which

9 We foresee that other requirements, as, for instance,
discovery of resources and tools, preservation of
resources, archiving services, content discovery,
distribution, authentication and authorization, could also
be designed around the structure we propose.

require a fee to be paid before usage. Each user will be
able to contribute its own tools and annotated resources,
as well as using processing chains adapted to its
specifications, both in terms of input and output formats
and cost and performance issues.

Acknowledgments
Part of the work for the paper was supported by the
ROTEL (CEEX project) AMCSIT contract no.
29/03.10.2005, the CLARIN INFRA-2007-2.2.1.2 project,
and the FP6 LT4eL project.

References

T. Brants (2000): TnT: a statistical part-of-speech tagger.

In Proceedings of the sixth conference on Applied

Natural Language Processing, Seattle, Washington, pag:

224 – 231.

D. Cristea, C. Butnariu (2004): Hierarchical XML

representation for heavily annotated corpora. In

Proceedings of the LREC 2004 Workshop on

XML-Based Richly Annotated Corpora, Lisbon,

Portugal.

D. Cristea, C. Forăscu, I. Pistol. (2006):

Requirements-Driven Automatic Configuration of

Natural Language Applications. In Bernadette Sharp

(Ed.): Proceedings of the 3rd International Workshop

on Natural Language Understanding and Cognitive

Science - NLUCS 2006, in conjunction with ICEIS

2006, Cyprus, Paphos, May 2006. INSTICC Press,

Portugal. ISBN: 972-8865-50-3.

H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan.

(2002): GATE: A framework and graphical

development environment for robust NLP tools and

applications. In Proceedings of the 40th Anniversary

Meeting of the ACL (ACL’02). Philadelphia, US.

H. Cunningham, V. Tablan, K. Bontcheva, M. Dimitrov.

(2003): Language engineering tools for collaborative

corpus annotation. Proceedings of Corpus Linguistics

2003, Lancaster, UK.

D. Ferrucci and A. Lally. (2004): UIMA: an architectural

approach to unstructured information processing in the

corporate research environment, Natural Language

Engineering 10, No. 3-4, 327-348.

N.Ide, Bonhomme P., Romary L. (2000) : XCES: An

XML-based Encoding Standard for Linguistic Corpora,

Proceedings of the Second International Language

Resources and Evaluation Conference. Paris: European

Language Resources Association

D. Cristea, I. Pistol: Managing LRs and Tools Using a Hierarchy of Annotation Schemas 8

Proceedings of the LREC 2016 Workshop “Translation evaluation – From fragmented tools and data sets
to an integrated ecosystem”, Georg Rehm, Aljoscha Burchardt et al. (eds.)

Sustainable operability: Keeping complex resources alive

Menzo Windhouwera, Alexis Dimitriadisa,b

aUniversity of Amsterdam, bUtrecht institute of Linguistics OTS
M.A.Windhouwer@uva.nl, alexis.dimitriadis@let.uu.nl

Abstract
The data contained in a typological database are difficult or impossible to use on their own. Sustainability must include not only preserva-
tion of the data, but also of the interface designed to present them—or a reasonable substitute. The Typological Database System project
(TDS), which originated as a way to address issues of fragmentation and interoperability of typological databases, also points the way to
a model of sustainability beyond the lifetime of a database’s host application.

1. Introduction: Obstacles to the
sustainability of complex resources

While the sustainability of language resources such as cor-
pora and dictionaries can be largely safeguarded by relying
on documented, standard formats for their encoding, the ap-
proach does not scale well for resources with more complex
internal structure, for which no general standard can be suf-
ficient. Such complex resources have the characteristic that
they require a certain software tool for their proper utiliza-
tion; and that this software tool is not generic (e.g., an audio
player, text editor, or linguistic annotation tool that supports
the storage format of the resource), but is made specifically
for the resource in question: Databases, in particular, are
typically accessed through a custom-made user interface.
A second, interacting problem is that much of the infor-
mation needed to properly navigate and interpret such data
is encoded in its user interface, not with the data itself. We
consider the case of typological databases, and describe our
approach to their integration and long-term sustainability.
Consider, as a concrete example, a typological database
consisting of several linked tables, accessible over the in-
ternet through a web interface comprising several forms.
Numerous such databases exist today, and more are being
created at a rapid pace.1 Once they are completed, such
databases are subject to the usual perils afflicting electronic
linguistic resources: Gradual obsolescence of their encod-
ing formats or host software; sudden disappearance due
to incompatible software updates, retirement of a “legacy”
server, or as URLs change and links fail to be updated;
gradual fall into unusability with the dissipation of the in-
sider knowledge often needed to usefully operate a poorly
documented resource; etc.
To render such a database sustainable, it is not enough to
export its tables in some format guaranteed to be readable
(e.g., tab-separated files in a Unicode encoding, or even an
SQL dump in some portable format). Doing so is insuffi-
cient in two important respects:

1Web-accessible databases include the Graz Database on
Reduplication, at http:// reduplication.uni-graz.at/ ; the databases
of the Surrey Morphology Group, at http://www.smg.surrey.ac.
uk/ ; the Typological Database of Intensifiers and Reflexives,
at http://userpage.fu-berlin.de/∼gast/ tdir/ ; the Stress Typology
Database, at http:// stresstyp.leidenuniv.nl/ ; the Berlin-Utrecht Re-
ciprocals Survey, at http:// languagelink.let.uu.nl/burs/ ; etc.

a. The meaning of the table contents, and their inter-
relationships, are not explicitly given in the data ta-
bles; this is the familiar problem of documentation
for a resource, but exacerbated (compared to corpora
or dictionaries) by the complexity and variability of
database structures, and by the relatively abstract level
of linguistic description involved.

b. Even if accompanied by full documentation, a static
collection of data is difficult, tedious, or even impos-
sible to utilize without a suitable software tool. The
forms and menus created by the original developers
to operate a database are essential to its use, but they
cannot be exported along with the data. We will term
this consideration, which has not received as much ex-
plicit attention as issues of format and access, as the
problem of sustainable operability.

To appreciate the scale of the operability problem, con-
sider the difficulty of using a general-purpose table browser
(a spreadsheet application, for example) to navigate the
contents of a database consisting of several tables. Table
columns (attributes) typically contain numeric values ex-
pressing different properties (whose meaning is, at best,
explained in a separate document).2 The tables are linked
to each other by means of numeric keys with no intrinsic
meaning. The process of navigating such data is tedious and
error-prone, and likely to deter all but the most motivated
researchers.
Lack of operability also has a detrimental impact on re-
source discovery: Summary metadata can only give an ap-
proximate indication of the utility of a resource for any par-
ticular task. A future researcher who will need to evaluate
a large number of potentially useful resources will be hin-
dered by the inability to inspect their contents without a
large investment of effort.

1.1. The limits of data-only formats
The vast majority of existing typological databases are
stored in relational database management systems. The

2In proper relational design, numeric values can be indices into
a separate table that matches numeric codes to a text equivalent.
In practice, however, the meaning of numeric values is often em-
bedded in the user interface; and prose documentation can be non-
existent or out of date.

M. Windhouwera, A. Dimitriadisa: Sustainable Operability: Keeping Complex Resources Alive 9

Proceedings of the LREC 2016 Workshop “Translation evaluation – From fragmented tools and data sets
to an integrated ecosystem”, Georg Rehm, Aljoscha Burchardt et al. (eds.)

relational structure itself is a sort of encoding standard,
and would seem to provide a basis for standardization:
While SQL implementations are too variable for database
dumps in SQL format to be themselves portable, some
version or extension of standard SQL could conceiv-
ably be chosen as the standard for data archiving. Even
if the obstacles to unifying the many extant flavors of
SQL could be overcome, however, the result would al-
low implementation-independent data storage but would
still not render databases operable. The SQL schema of a
database is insufficient in the same respects already men-
tioned:
First, it is an incomplete description of the database, since
it does not include those parts of the database logic that are
encoded in the user interface: Documentation and instruc-
tions to the user, business rules (explicit or implicit), and,
in many cases, the text equivalents of values and menu op-
tions that are stored as small integers in the database. In the
language of the OAIS Reference Model (ISO 14721, 2003),
an SQL dump of a typological database is rarely “indepen-
dently understandable.”3

Second, general-purpose browsers for relational databases
are too low-level; they allow viewing of one table at a time,
but do not automatically perform appropriate joins or ag-
gregations of records in one view—and, even with knowl-
edge of foreign key declarations, have no way of determin-
ing which joins or aggregations are “appropriate.” Simply
put, the user interface of a database is underdetermined by
its relational schema.
We doubt that these problems are restricted to relational
databases. Similar issues doubtless arise with other com-
plex resources developed with their own interface, and with
other data models besides relational databases.

1.2. Toward a solution
The difficulty of achieving sustainable operability can be
summarized as follows: Complex resources require ad hoc
software that cannot be maintained over the long term; so
operability can only be ensured by relying on generic soft-
ware that can be maintained, and periodically replaced, in a
cost-effective manner. But traditional data archiving prac-
tices do not provide enough information for generic soft-
ware (or even human specialists in many cases) to recon-
struct the proper structuring and presentation of the data.
It can be seen now that to fully meet the goal of sustain-
able operability, the archived data must first be “indepen-
dently understandable.” We can distinguish here between
user-oriented metadata (documentation), which helps users
interpret the data when it is presented, and formal, system-
oriented metadata that is machine-understandable and can
describe not only the encoding and relational structure (nar-
rowly considered), but also appropriate ways of managing
and presenting the data to the user.

3The OAIS Reference Model charges conforming archives
with ensuring that archived information be “independently under-
standable” by its designated target community, i.e., interpretable
without recourse to hard-to-access resources, including the indi-
viduals who created it. This is considered necessary for long-term
data preservation. We thank an anonymous reviewer for calling
this point to our attention.

What is needed, minimally, is a software platform that
provides operability of typological databases with diverse
structures. While no tool could probably be fully generic
and at the same time achieve operability without a pro-
hibitive amount of configuration, the problem is not in-
tractable when restricted to one application domain at a
time—in our case, to the data models applicable to typo-
logical databases. But no software platform can make up
for the lack of information that is essential to managing or
understanding a resource; this problem must be addressed
by ensuring that the required information is collected, and
is suitably utilized by the software platform in question.

Sustainable operability, in short, requires two things: suffi-
ciently rich metadata and documentation for the data to be
not only “independently understandable” by its end-users,
but also for automatically determining appropriate ways of
rendering it; and a software tool, or a series of software
tools over a long period of time, that utilize this informa-
tion to provide the actual operability.

To provide operability of an open-ended collection of re-
sources in a practical way, there must be a way for a generic
application (or several) to be used with all of them. Be-
cause the native storage formats (usually relational) are in-
sufficient to describe typological databases to a degree that
allows operability via a generic tool, we adopt a hierarchi-
cal, semi-structured data model that combines the data itself
with rich documentation of database contents and of the
linguistic properties being described. We will term this the
Integrated Data and Documentation Format (IDDF). Sus-
tained operability is then a matter of mapping resources to
the IDDF format at the time of archiving, and maintaining a
generic tool, or tools, that support searching and browsing
over IDDF resources. This approarch accomplishes oper-
ability of the databases in the narrow sense, and also pro-
vides access to the documentation needed by the end user
to properly interpret the available data.

Eventually, even the generic software will approach obso-
lescence due to changes in web technology, host operating
systems, and the like. At that point it will need to be re-
placed by new IDDF-aware software with analogous func-
tionality. The self-describing nature of IDDF documents is
meant to support their migration to new access tools (or
even the addition of new tools next to existing ones) with-
out any changes to the resources themselves.

But long-term operability is more than a matter of keep-
ing the software running. A proper solution should also
support other considerations of sustainability. In particu-
lar, it should be positioned within a scenario involving data
archiving and its complement, resource discovery.

The Typological Database System (TDS), described in
more detail in section 2., is a working implementation
of such an architecture. The TDS provides integrated ac-
cess to a collection of independently developed typolog-
ical databases through a single, generic web interface.
Databases are imported into the system through a pro-
cess that combines rich documentation of all aspects of the
data with automated transformation the data itself into a
common, hierarchical data space. The result is a unified
data structure (the IDDF data tree) that can be searched or

M. Windhouwera, A. Dimitriadisa: Sustainable Operability: Keeping Complex Resources Alive 10

Proceedings of the LREC 2016 Workshop “Translation evaluation – From fragmented tools and data sets
to an integrated ecosystem”, Georg Rehm, Aljoscha Burchardt et al. (eds.)

Figure 1: The TDS architecture

browsed over the web through the TDS webserver.4

While the process can easily be performed on each database
separately, the approach has the added benefit of allowing
the integration of multiple databases into a unified resource.
(This is in fact the primary goal of the TDS). Arguably, in-
tegration is not essential for sustained operability of the re-
sources; but it greatly enhances their usefulness, efficiency
of utilization, and ease of resource discovery.
Data archival inadvertently exacerbates the problem of op-
erability, because archives cannot commit to long-term
hosting and maintaining a caleidoscope of diverse database
applications; rather than wait for obsolescence of the soft-
ware or hardware, operability threatens to be lost at the
moment of uploading the static content of a resource to a
digital archive. From our perspective, this can be seen as
a blessing in disguise: Sustainability problems can be ad-
dressed while the original technical infrastructure is still
operational, and the custodians of a resource still possess
the required knowledge (either in their heads or as offline
documentation).

2. The Typological Database System
The Typological Database System is a web-based service
that provides integrated search access to a collection of in-
dependently developed typological databases. The system
consists of a data integration module and a web server that
provides access to the integrated data.5 At the intersection
of the two parts is the IDDF, a hierarchical data model that
integrates data and metadata from multiple databases into a
unified data space.
Figure 1 shows the TDS architecture. The primary data in-
put to the system comes from the component databases.

4http:// languagelink.let.uu.nl/ tds/ .
5The TDS is a project of the Netherlands Graduate School of

Linguistics (LOT). It is supported by a grant from the Netherlands
Organization for Scientific Research (NWO), and by funds from
the participating universities (University of Amsterdam, Utrecht
University and Leiden University). For more information on the
TDS, see (Saulwick et al., 2005; Dimitriadis et al., 2005; Dimitri-
adis et al., 2008).

A domain expert creates an import schema that includes
a mapping of each database into a unified hierarchy, en-
riched by documentation of the data and its relation-
ship to the common TDS knowledge base. On the ba-
sis of this schema, data and documentation from multiple
databases are integrated into a single hierarchical struc-
ture, the IDDF data tree. A separate component of the sys-
tem, the TDS webserver, supports querying, browsing, and
resource-discovery functions over the collected data.
The entire system is XML-based and relies on a number of
(commercial) open source or freely available libraries. It is
written largely in Java, XSLT, XQuery and a XML pipelin-
ing language specific to the application server 1060 NetK-
ernel.6

With around a dozen databases currently in the TDS, the to-
tal number of parameters in the system is well over a thou-
sand; hence the system follows a two-stage access model,
consisting of resource discovery followed by query formu-
lation and execution. During the resource discovery stage,
users search or browse the combined metadata to discover
database fields of interest. The user interface supports in-
tegrated search, display and navigation of the metadata,
presenting users with the information necessary to assess
both the relevance and the correct interpretation of a field.
Selected fields are accumulated using a shopping basket
model. In the second stage, the user constructs and executes
a query on the basis of the fields in the query basket.

2.1. The integration process
The import schema is defined in a special-purpose lan-
guage developed by the TDS project, the Data Transforma-
tion Language (DTL). 7 The TDS import engine interprets
the DTL specifications, and uses an appropriate software
plug-in to extract data from a copy of the original database
(which can be in a variety of database formats) and trans-
form it into the IDDF tree.
Typically, the documentation provided with a database is
insufficient to make its semantics and logical structure fully
explicit, and the creation of the DTL specification involves
repeated interaction between the TDS domain expert and
the creators of the database. The required metadata, which
often lives only in the heads of the database’s creators, is
in this way elicited and recorded. The process is non-trivial
but necessary for the sustainability of the data. Because the
developers of the component databases have devoted much
time and effort to collecting information in their databases,
each component database represents a valuable resource;
and therefore the time investment is justified.
In any event the process is reusable: Once the transfor-
mation schema has been defined, new data added to the
database can be imported with minimal human interven-
tion. In this way a database can be mapped to the IDDF
before the data collection is finished and its data frozen.

6http://www.1060.org/ .
7The DTL is a non-procedural language that allows an IDDF

schema to be specified and annotated, and the resulting data tree to
be populated from the database contents. It was designed for use
by linguists with no special technical background. See (Saulwick
et al., 2005; Dimitriadis et al., 2008).

M. Windhouwera, A. Dimitriadisa: Sustainable Operability: Keeping Complex Resources Alive 11

Proceedings of the LREC 2016 Workshop “Translation evaluation – From fragmented tools and data sets
to an integrated ecosystem”, Georg Rehm, Aljoscha Burchardt et al. (eds.)

Only if the database schema is modified is it necessary to
modify the transformation schema.
It should be added here that while it is necessary to have
a working understanding of a database’s semantics in or-
der to integrate it into the TDS, much of the documentation
collected and recorded into the IDDF tree is not explicitly
encoding-related, but intended for the benefit of the end-
user. For example, a TDS component database gives the
number of basic color terms in some languages as “4.5”.
As a matter of encoding it is enough to know, as its docu-
mentation explains, that color term counts can be fractional
numbers, and that 4.5 means “between four and five”. But
what does “between four and five” mean? It might indi-
cate a dialectal split, inconsistencies between speakers, the
presence of a marginal or dubious color term, uncertainty
about the facts, or all of the above. The answer is of interest
to potential users of the database, and only its creators can
provide it.
Conceptually, the DTL is just one means of carrying out
this transformation;8 what is important from our present
perspective is that the DTL, or an equivalent, defines a map-
ping of a data resource into an IDDF tree; and that the result
comprises a combination of data and relevant documenta-
tion. Our vision of the IDDF is as an open format, which
can be generated and manipulated by other tools. Section 3.
gives more details on its structure, and on the way other
components of the TDS architecture can be generalized.

2.2. What is transformed
Independently created data resources differ in a variety of
ways, which need to be addressed during the integration
process. The TDS makes an important distinction between
differences in encoding (in the broad sense) and differences
stemming from deeper theoretical or practical considera-
tions. The former include variation in font encodings or no-
tational conventions such as interlinear gloss labels, codes
for Boolean values (true/false vs. 0/1, etc), the organiza-
tion of information into fields and tables, etc. The deeper
differences are ultimately differences in meaning (seman-
tics): They stem from considerations such as the theoretical
commitments of a research group (including the associated
terminology), the specific classificatory categories and cod-
ing decisions adopted during the construction of a database,
etc.
While standardization efforts might one day lead to more
uniformity in structure and encoding among databases, they
will have no effect on the divergence of theoretical view-
points and research traditions that constitutes the most in-
tractable source of heterogeneity. These diverse viewpoints
are not only dearly held by their practitioners: They are the
subject matter and outcome of linguistic analysis, and can-
not (should not) be replaced by any uniform, agreed-upon
framework. While it might seem like a good idea to trans-
form data into some “standard” terminology, the abstract
nature of typological data collections makes this impos-
sible. First of all, two theoretical terms are rarely if ever
exactly co-extensive; even if they were, the terminology

8One could, for example, convert data into XML and transform
it by means of hand-written XSLT, as the TDS did during the pilot
phase of the project.

<iddf:warehouse
xmlns:iddf="http://.../ns/iddf">
<iddf:meta>

<iddf:scope id="tds" type="warehouse">
...

</iddf:scope>
<iddf:notion id="n1" name="language"
scope="tds" type="root"
key-datatype="enum">
<iddf:label>Language</iddf:label>
<iddf:description>

One of the world’s languages
</iddf:description>
...

</iddf:notion>
...

</iddf:meta>
<iddf:data xmlns:tds="..." ...>

<tds:language iddf:notion="n1"
key="...">
...

</tds:language>
...

</iddf:data>
</iddf:warehouse>

Figure 2: The top-level structure of the IDDF.

adopted by a researcher is often the result of a deliberate
process, and can be felt to be as much a part of a linguistic
analysis as its empirical claims. To substitute terminology
under such circumstances would be a form of misrepresen-
tation.
Accordingly, the TDS approach is to compensate for en-
coding differences wherever possible, by transforming the
source data to adhere to, or at least be relatable to, a uni-
form design (“object model”); but semantic divergences are
maintained, and are made explicit by suitable documenta-
tion and careful construction of relationships between vari-
ous levels of metadata.
Because the various component databases each have their
own schema and focus, i.e., they are heterogeneous, the ag-
gregated IDDF data is semi-structured. To assist in the pro-
cess of resource discovery by end-users, the TDS metadata
includes links to a unified knowledge base, consisting of
an ontology of linguistic terms and several taxonomies that
provide quick domain-oriented entry points.

3. Sustainable operability with the IDDF
At the heart of the TDS, and of our vision for sustainable
database operability, is the IDDF data tree. It organizes data
and metadata into a unified structure that provides sufficient
information for generic resource discovery, query opera-
tions, and interactive browsing tools.

3.1. The IDDF data structure
The IDDF data structure consists of two parts, a metadata
schema and a data part. The metadata part defines and anno-
tates the schema to which the data part conforms.9 We use
the term “data tree” to refer to the entire structure, since the

9The IDDF can be conceptually considered as the concatena-
tion of two documents. The document as a whole is valid XML,

M. Windhouwera, A. Dimitriadisa: Sustainable Operability: Keeping Complex Resources Alive 12

Proceedings of the LREC 2016 Workshop “Translation evaluation – From fragmented tools and data sets
to an integrated ecosystem”, Georg Rehm, Aljoscha Burchardt et al. (eds.)

two parts are closely interrelated. An abbreviated example
is shown in figure 2. (A detailed example is given in the
Appendix).
Figure 3 provides an informal overview of the conceptual
structure of the IDDF data tree. It can be informally under-
stood as a hierarchy of nodes (called Notions), which serve
a variety of functions.

(namespace)

Grouping Notion ← (documentation)

(more groups)

Data Notion← (documentation)

(Data) ← (value documentation)

Figure 3: Conceptual organization of the IDDF data model.

At the leaves of the tree are Field Notions, which corre-
spond to fields of the component databases.10 When the tree
is built (“instantiated”) by importing the databases, these
Notions are populated with the data. (Note that the docu-
mentation remains in the schema portion of the IDDF, as
shown above).
There are also Grouping Notions, which contain other No-
tions (either of the data or the grouping kind) and thus de-
fine the hierarchical structure of the IDDF data tree. Fields
from several databases can be mapped to the same part of
the tree, even the same Notion; for example, the attribute
Language Name is a single Notion used for all databases.
(The TDS organizes data according to topic, regardles of its
database of origin; one could easily adopt a different policy,
and map each database into a dedicated part of the hierar-
chy).
To facilitate management of all this data from diverse
sources, Notion definitions are overlaid with a system of
namespaces, which can be nested; Notions defined in a par-
ticular namespace can only be used within its scope. For
example, the TDS project defines a top-level “tds scope”
that provides the upper levels of semantic context, such
as clause-level phenomena. The component databases can
then define database-scoped Notions as descendants of ap-
propriate points in the global hierarchy.
Besides its content, each Notion is associated with docu-
mentation and format information (which are stored in the
schema part of the IDDF, as detailed below). Grouping No-
tions can be associated with a description of the kind of data
they dominate, including summaries of the linguistic theory
and terminology of the data providers; Field Notions can be
associated with a description as well as an enumeration of
possible values, which can themselves have associated doc-
umentation.

validated against a Relax NG schema that essentially ignores the
data section. Validation as an IDDF document requires two passes:
After the initial minimal validation, an XSLT 1.0 stylesheet is run
on the metadata section to generate a complete Relax NG schema.
This is then used to validate the entire IDDF document.

A sample IDDF document, and the required schema and
stylesheet, are available at http:// languagelink.let.uu.nl/ tds/ iddf/ .

10The relationship to the original database fields is not one-to-
one. Some Notions are in fact created by splitting up or combining
several database fields.

Figure 4: Graphical representation of the example IDDF
schema and data tree

In many cases, a database uses a number of fields for infor-
mation that belongs together and should be considered as a
whole. For example, geographic latitude and longitude to-
gether make up geographic coordinates, and these together
with language name, ISO code, and other essential infor-
mation make up the Language Identification group. Each
such group of fields is mapped to a subtree of the IDDF,
which is identified as a semantic context by means of a spe-
cial label assigned to its root Notion. These Top Notions, as
they are called, are treated specially by the TDS search and
browsing interface.
Larger hierarchies can be built by reusing these semantic
contexts and nesting Notions inside each other. There can
be multiple separate hierarchies, each with its own top-level
root (called a Root Notion). Hierarchies can be linked to
each other by establishing a primary/foreign key relation-
ship between a Root Notion and another Root Notion. The
role of Root Notions in the IDDF data model can be com-
pared with tables in the relation model.
Figure 4 shows how the hierarchical definitions in
the schema, tds:language, tds:identification,
pi:inventory and pi:phoneme, are utilized dur-
ing the instantiation process of the data tree. The ref-
erence leaves indicate the valid ways of linking these
hierarchies together; e.g., pi:inventory is nested in
tds:language; through the pi:phoneme reference in
pi:inventory, the hierarchies tds:language and
pi:phoneme are related.
Each of these building blocks, i.e., Notions, scopes and
values, can be extensively described in the metadata.
The metadata part of the IDDF document shown in the
Appendix starts with describing four scopes: tds, pi,
SyllTyp and UPSID. Due to space limitations, we do not
discuss scopes further. A Notion schema can contain the
following information:

1. an identifier;

2. a scope;

3. (optional) a label;

4. (optional) a description, possibly formatted using XHTML;

5. (optional) one or more typed links to the knowledge base;

6. (optional) one or more links to other Notions;

M. Windhouwera, A. Dimitriadisa: Sustainable Operability: Keeping Complex Resources Alive 13

Proceedings of the LREC 2016 Workshop “Translation evaluation – From fragmented tools and data sets
to an integrated ecosystem”, Georg Rehm, Aljoscha Burchardt et al. (eds.)

7. (optional) semantic data type;

8. (optional) semantic value data type and/or key data type

9. (optional) an enumeration, possibly partial, of the possible
values or key values; and for each (key) value:

(a) the literal (key) value as it appears in the data;

(b) (optional) a label;

(c) (optional) a description;

(d) (optional) one or more links to the knowledge base;

(e) (optional) one or more links to other Notions.

The example in the Appendix includes several No-
tions that illustrate some of these documentation units:
tds:ISO-639-3 has a description marked up with
XHTML to include a link to the standards website;
pi:phoneme and SyllTyp:vowel have links to con-
cepts in the ontology, such as segment and vowel;
pi:inventory has the semantic data type UPPC (Uni-
versal Phoneme Positioning Chart, see (Dimitriadis et al.,
2008)); the metadata of Root Notions tds:language
and pi:phoneme contain enumerations of their possible
key values, while SyllTyp:vowel contains an enumer-
ation of its values (see Figure 5).

<iddf:notion id="n7" name="vowel"
scope="SyllTyp">

<iddf:label>Vowel</iddf:label>
<iddf:description>
Is the segment a vowel?

</iddf:description>
<iddf:link type="concept" rel="as"

href="http://...owl#vowel"/>
<iddf:link type="concept" rel="to"

href="http://...owl#vocalicFeatureNode"/>
<iddf:values datatype="enum">
<iddf:value>
<iddf:literal>+</iddf:literal>
<iddf:description>
The segment is a vowel.

</iddf:description>
</iddf:value>
<iddf:value>
<iddf:literal>-</iddf:literal>
<iddf:description>
The segment is not a vowel.

</iddf:description>
</iddf:value>

</iddf:values>
</iddf:notion>

Figure 5: Example of IDDF metadata associated to a notion.

3.2. The data
Since there are multiple top-level Root Notions, the data
tree is actually a forest of trees, each of them an instantia-
tion of a hierarchy dominated by a Root Notion. These trees
are linked to each other using the key and ref attributes
(see the Appendix). As Notions (with the exception of Top
and Root Notions) can’t be uniquely identified by just the
combination of the scope and the identifier, each node in
the tree also specifies which Notion is being instantiated,
using the iddf:notion attribute.

Each instantiation is based on data from at least one com-
ponent database. The source of a node in a tree is indicated
by the iddf:srcs attribute. When data loaded from var-
ious databases are in agreement, they are instantiated as a
single node and this attribute lists all these database scopes.
But databases may also disagree. For example the Sylla-
ble Typology Database uses the name “Wari’ (Tubarão)”
for a certain language, while UPSID uses “Huari.” Both
names are stored in the IDDF document, but each in its
own iddf:value node with a srcs attribute indicating
its origin.11

3.3. The IDDF surroundings
3.3.1. The metadata and data source
The IDDF, as already mentioned, is an ordinary XML for-
mat. There are no barriers to creating valid IDDF docu-
ments with tools other than the DTL engine; one might
wish, for example, to design a description language with a
different syntax and primitives, perhaps for resource types
that are very different than the typological databases we
have been working with. Another possibility might be for
a (complex) database application to directly support IDDF
as an export format, without the intervention of a descrip-
tion language. In this case, the descriptive metadata might
still need to be manually supplemented. This indicates that
there could be a need for specific IDDF metadata editors. It
is easy to visualize the use of a specific GUI to annotate No-
tions, and perhaps even to create the semantic hierarchies
(contexts).

3.3.2. Links to external semantic resources
As figure 1 shows, the IDDF document can be linked to a
knowledge base. In the case of the TDS this consists of an
OWL ontology, developed during the course of the project,
and a number of SKOS taxonomies. This allows the TDS
to semantically extend queries by following the formal re-
lationships in the ontology. The taxonomies provide alter-
native organizations of entry points into the data schema.
Other forms of encoding knowledge, e.g. in the form of a
tag cloud, could also be associated with the IDDF schema.
In the TDS project, developing the metadata and the knowl-
edge base went hand in hand. In applications of IDDF
where the metadata is readily available one could also ex-
tract the knowledge base, or part of it, by mining the meta-
data (Feldman and Sanger, 2006; Cimiano, 2006). To get
enough input for the mining algorithms one might use other
related inputs, e.g., in the case of scientific databases the
articles written on the basis of the data. One could also
bootstrap the mining process by manually creating an initial
domain-specific knowledge base.

3.3.3. Standards
Because the data in typological databases is overwhelm-
ingly about languages, data aggregation depends crucially
on reliably identifying the language that data is about. The
TDS protocol relies on ISO 639-3 language codes (ISO

11Note that the IDDF could have also allowed each database
to be mapped to a separate hierarchy, avoiding any chance of an
overlap or clash.

M. Windhouwera, A. Dimitriadisa: Sustainable Operability: Keeping Complex Resources Alive 14

Proceedings of the LREC 2016 Workshop “Translation evaluation – From fragmented tools and data sets
to an integrated ecosystem”, Georg Rehm, Aljoscha Burchardt et al. (eds.)

639-3, 2007), internally and externally, to identify the lan-
guage described and carry out data integration. ISO lan-
guage codes are used internally as part of the key, and they
are always utilized for data integration, if available. For
databases or records that do not provide them, the TDS do-
main experts attempt to add them (by means of the DTL
script), on the basis of language names and the assistance
of the database creators. Again, this is a labor-intensive pro-
cess but is justified in view of the value of the data, and un-
avoidable if the language described is to be unambiguously
identified. (Once again the result is enrichment of the orig-
inal data through the transformation process). In alterna-
tive application domains where cross-database integration
of records is not a goal, such issues are less of a concern.
To control the proper handling of the various kinds of inte-
grated data, the IDDF tracks the data type of each variable;
the primitive types free text and enumeration can be over-
laid with an open set of other (semantic) types, which are
defined dynamically in the IDDF schema (that is, through
the DTL) and typically apply to a group of related Notions
rather than to a single one. The TDS web interface, for ex-
ample, has special renderer modules for the semantic types
interlinear glossed text (consisting of aligned morphemic
tiers, a translation, etc.) and phoneme inventory12

To fully exploit this approach, it should be possible for
Notions (atomic or complex) to be associated with stan-
dard data types or controlled vocabularies. Thus the ISO
language code can be linked to the namespace of the ap-
propriate authority, which provides a controlled vocabulary
shared by other tools; fields conforming to other controlled
vocabularies can be linked to the appropriate “data cate-
gory” registered in the future ISO Data Category Registry
(ISO 12620, 2008; Kemps-Snijders et al., 2008), etc. Other
encoding types such as MIME types, complex structures
like interlinear glossed text, etc., should similarly be re-
ported in a standard way, and/or linked to an appropriate
URI to allow their identification.
In effect, this approach extends the notion of standard data
types beyond simple numeric, text and enumerated types,
to more complex aggregations of data. There still work to
be done in the domain of registering such resource types
(the ISO Data Category Registry is designed to cover only
unitary data types, not hierarchies), but the IDDF can be
positioned to utilize such advances when they occur.

4. The generic user interface
The rich structure of the IDDF has made it possible to de-
velop a generic data browser service for the typological
database domain, available through the TDS server.
The TDS server is divided (somewhat imperfectly, at the
moment) into an Application Programming Interface (API)
and a web interface. While the web interface is closely tied
to the state of today’s web browsers and associated tech-
nology (including JavaScript support, etc.), the API is con-
siderably more stable. By untangling these two better, an
API can be created that provides services to multiple gen-
erations of other tools.

12The phoneme inventory type triggers a specific table-based
rendering of a full or partial phoneme inventory.

The data browser is generic, in the sense that it does not
incorporate schema or data information about any of the
component databases; all such information resides in the
IDDF. The browser is limited, however, by the kind of data
models and displayable objects one expects to find in typo-
logical databases. Much of the data in typological databases
can be displayed as tables of short values, and therefore
such tables are prominent in the browser interface. There
are special provisions for presenting interlinear glossed text
and tables of phonemic inventories, and a mapping module
for displaying data values at the geographic location of the
language in question. On the other hand, there is currently
no provision for displaying video streams, or (more impor-
tantly) any provision for managing data aligned to particu-
lar portions of a video stream.
While more such display modules can be developed as nec-
essary, the browser remains generic only in the limited con-
text of the intended application domain. For very different
kinds of resources (such as experimental measurements,
corpora, annotated multimedia data, etc.), one can imag-
ine a completely different data browser that is suited to the
structure of that application domain. The IDDF itself can
encapsulate a wide variety of such formats.
The structure of the IDDF also makes partial compliance
possible: An IDDF-aware tool, for example, could extract
and manipulate interlinear glossed text from a larger re-
source whose full structure is not supported by the tool.
Finally, it must be acknowledged that the TDS interface
(and probably any conceivable generic equivalent) is not
as effective in presenting data as the best custom-built ty-
pological database interfaces; but it is more than sufficient
for providing operability of the data, and other generic
browsers over the IDDF data could undoubtedly do even
better. In any event, several of the component databases of
the TDS had no autonomous interface at all, or only a very
primitive one; and the TDS interface is immensely more
effective than these.

5. The IDDF in broader context
The issues we have discussed are not new, of course. We
have already mentioned OAIS, the Open Archival Informa-
tion System Reference Model (ISO 14721, 2003), which
provides definitions of terms related to data archiving and
defines roles and responsibilities in the contect of a func-
tional model. The OAIS document discusses in some detail
the requirement that archived resources should be indepen-
dently understandable to their target community of users,
and also acknowledges the issue of operability, mention-
ing that the native user interface sometimes encodes infor-
mation essential for its understandability and noting that
“maintaining Content Information-specific software over
the Long Term has not yet been proven cost effective due
to the narrow application of such software.” In this context,
our approach can be seen as a way to achieve an economy of
scale, by transferring the burden of operability to domain-
wide generic tools which manage the generic IDDF format.
This will reduce the burden of maintaining operability in a
very scalable way, and will hopefully prove to be acceptably
cost-effective. Whether this expectation will be realized can
only be determined in the long term.

M. Windhouwera, A. Dimitriadisa: Sustainable Operability: Keeping Complex Resources Alive 15

Proceedings of the LREC 2016 Workshop “Translation evaluation – From fragmented tools and data sets
to an integrated ecosystem”, Georg Rehm, Aljoscha Burchardt et al. (eds.)

The OAIS also devotes attention to issues of archiving for
the Long Term, defined as a period long enough to raise is-
sues of adapting to new technology or a changing user com-
munity. The latter issue, of a changing user community, is
not one we address directly; our user-oriented documenta-
tion is intended to make data independently understandable
to present-day linguists, not future ones. However, there is
sufficient creativity and variation in today’s linguistic the-
ories that even for understandability by contemporary lin-
guists, they must be documented in some detail. Thus the
documentation that is necessary today will serve as a good
basis for understandability in the future.

Mapping a database to IDDF format requires manual en-
richment of the resource with metadata that cannot be au-
tomatically automatically computed from its schema. Typ-
ically, the creators or maintainers of the original resource
are asked to provide supplementary information (concern-
ing both formal and user-oriented metadata) that is not
embedded in the native data dump. While this is neces-
sary if the resource is to be independently understandable
(and is therefore indispensable to real data preservation),
it means that the approach is applicable only to data of
sufficient value to merit this sort of intervention. For very
large-scale data collection projects, this kind of attention to
each incoming resource might well be impossible. In such
cases, the IDDF architecture can still support operability at
a lower level, comparable with that provided by present-day
solutions: The resource, along with whatever documenta-
tion is available, is imported in a form that simply mirrors
the relational structure of the original database. Such data
cannot be rendered in the most appropriate way, but can
be browsed and manipulated at the relational table level by
suitable generic software. This gives a level of functionality
equivalent to viewing a database with a DBMS administra-
tion tool.

For large-scale data integration, then, the IDDF “dumbs
down” to a level of functionality comparable to that pro-
vided by some existing large-scale archiving solutions. For
example, (Heuscher et al., 2004) addresses the task of
archiving the records of the Swiss Federal Administration,
which are reported to be growing at a rate of some twenty
terabytes per year. The SIARD project achieves “software-
invariant” archiving of relational databases via transforma-
tion, at time of import, to a consensus SQL model (SQL-3).
“On principle, functionality (i.e. software, hardware) is not
archived” (Heuscher et al., 2004, p. 1). Archived data can be
browsed at the relational table level by reloading into a con-
forming DBMS. The Chronos system (Brandl and Keller-
Marxer, 2007) maintains data in its original dump format
and provides low-level user access, again at the level of
browsing the relational structure and tables, by supporting
“on-the-fly migration” from an ever-growing collection of
dump formats. This approach, while allowing archives to
be maintained on a very large scale, does not provide high-
level operability, especially for complex data of the type
we have been concerned with. The IDDF architecture al-
lows higher levels of operability to be achieved where this
is practical, but can be (under)utilized to yield low-level op-
erability for large volumes of complex data.

Roles and responsibilities
The architecture described relies on software support at two
levels: On the input side, there must be tools to support the
creation of IDDF documents. On the access side, there must
be a generic data browser for any supported application do-
main. The two levels of tools have different maintenance
requirements:
Once a resource has been mapped to the IDDF format,
input-side software is not needed for its continued oper-
ability (unless, of course, the original resource changes and
needs to be re-imported). An archive that stores resources in
IDDF format need only ensure the continuous availability
of appropriate data browsers on the access side. As such
browsers become outdated or unmaintainable, they must
be replaced by new IDDF-aware browsers with analogous
functionality.
For IDDF-based archiving to be practical, however, suit-
able conversion tools are necessary. In the TDS architec-
ture, IDDF generation is carried out by the TDS import en-
gine, which is driven by DTL schemas and relies on plug-
ins that grant it access to various database and dump for-
mats.13

In principle, responsibility for maintaining IDDF genera-
tion tools (or using them) need not rest with the archive. A
resource provider can arrange to export their data in IDDF
format, perhaps via a DTL-like transformation module or in
some other way. If the format should become widespread,
one could even expect general-purpose DBMS applications
to support such conversions. For the meantime, however,
archives relying on the IDDF architecture must also address
the problem of bringing data to IDDF form.

6. Conclusions
As we have seen, the problem of sustained operability of
complex resources is ultimately traceable to the limitations
of common storage and interchange formats, which do not
provide sufficient information for generic navigation. By
focusing on the particular (but broad) domain of typologi-
cal databases, we have shown that the rich IDDF architec-
ture can integrate sufficient information for a generic data
browser adapted to the types of data common in typolog-
ical databases. The approach is extensible and suitable for
alternative application domains, as long as there is some
homogeneity in the kind of data that is being collected (re-
gardless of how each resource has chosen to present it). In
effect, the idea of storing resources in a standard format that
can be managed with generic tools is extended to families
of complex formats that represent similar data collections.
A notable aspect of the TDS is its focus not only on meta-
data pertaining to encoding formats and operability, but also
on documentation intended for the end-user. Because of
the abstract nature of linguistic analysis, such user-oriented

13Note that while a diverse collection of such formats must be
specifically supported, there is no need to support long-obsolete
formats. When an archive no longer plans to archive databases
stored on eighty-column punched cards, there will be no need
to maintain support for this format (or the associated hardware).
Once a resource is converted to IDDF, the original format is irrel-
evant to operability.

M. Windhouwera, A. Dimitriadisa: Sustainable Operability: Keeping Complex Resources Alive 16

Proceedings of the LREC 2016 Workshop “Translation evaluation – From fragmented tools and data sets
to an integrated ecosystem”, Georg Rehm, Aljoscha Burchardt et al. (eds.)

documentation is essential for the proper interpretation of
high-level resources like typological databases.
More generally, by collecting and centralizing metadata
and documentation, the TDS archival procedure safeguards
the interpretability (and therefore true operability) of the
archived data.
In the context of an archival environment, the IDDF archi-
tecture also solves the problem of versioning and citeability
of evolving resources: Instead requiring resource creators to
maintain multiple versions of their database, an archive can
simply host multiple versions of a resource, and make them
available (and operable) as if they were separate databases.
Hence the archive can provide a versioned, operable mirror
of the database without the need for any versioning provi-
sions in the database schema itself.
In short, the rich IDDF format can support sustainable oper-
ability of complex resources, by allowing a critical mass of
such resources to be managed through generic (but domain-
specific) tools.

7. References
Stefan Brandl and Peter Keller-Marxer. 2007. Long-

term archiving of relational databases with Chronos. In
First International Workshop on Database preservation
(PresDB ’07).

Philipp Cimiano. 2006. Ontology Learning and Popula-
tion from Text. Springer-Verlag, Berlin.

A. Dimitriadis, A. Saulwick, and M. Windhouwer. 2005.
Semantic relations in ontology mediated linguistic data
integration. In Proceedings of the E-MELD Workshop on
Morphosyntactic Annotation and Terminology: Linguis-
tic Ontologies and Data Categories for Linguistic Re-
sources, Cambridge, Massachusetts, July.

A. Dimitriadis, M. Windhouwer, A. Saulwick, R. Goede-
mans, and T. Bı́ró. 2008. How to integrate databases
without starting a typology war: The Typological
Database System. In S. Musgrave and M. Everaert, ed-
itors, The Use of Databases in Cross-Linguistic Studies.
Mouton de Gruyter. To appear.

Ronen Feldman and James Sanger. 2006. The Text Mining
Handbook. Cambridge University Press.

Stephan Heuscher, Stephan Järmann, Peter Keller-Marxer,
and Frank Möhle. 2004. Providing authentic long-term
archival access to complex relational data. In Euro-
pean Space Agency Symposium “Ensuring Long-Term
Preservation and Adding Value to Scientific and Tech-
nical Data”.

ISO 12620. 2008. Terminology and other language re-
sources – Data categories – Specification of data cate-
gories and management of a data category registry for
language resources. To appear.

ISO 14721. 2003. Space data and information transfer sys-
tems – Open archival information system – Reference
model.

ISO 639-3. 2007. Codes for the representation of names
of languages – Part 3: Alpha–3 code for comprehensive
coverage of languages.

M. Kemps-Snijders, M. Windhouwer, P. Wittenburg, and
S.E. Wright. 2008. ISOcat: Corralling data categories

in the wild. In Proceedings of the International Con-
ference on Language Resources and Evaluation, Mar-
rakech, Morocco, May.

A. Saulwick, M. Windhouwer, A. Dimitriadis, and
R. Goedemans. 2005. Distributed tasking in ontology
mediated integration of typological databases for linguis-
tic research. In Proceedings of the International Work-
shop on Data Integration and the Semantic Web, Porto,
Portugal, June.

Appendix: A longer IDDF example
We include here a sample IDDF structure. The first part
(<meta/>) integrates data schema and documentation,
while the <data/> element contains the sparse data.

<iddf:warehouse
xmlns:iddf="http://.../ns/iddf">

<iddf:meta>
<iddf:datatype id="UPPC"/>
<iddf:scope id="tds" type="warehouse">
<iddf:label>
Typological Database System

</iddf:label>
<iddf:scope id="pi">
<iddf:label>
Phoneme Inventories
</iddf:label>
<iddf:scope id="SyllTyp" type="database">
<iddf:label>
Syllable Typology Database

</iddf:label>
</iddf:scope>
<iddf:scope id="UPSID" type="database">
<iddf:label>
UCLA Phonological Segment
Inventory Database

</iddf:label>
</iddf:scope>

</iddf:scope>
</iddf:scope>
<iddf:notion id="n1" name="language"

scope="tds" type="root">
<iddf:label>Language</iddf:label>
<iddf:description>
One of the world’s languages

</iddf:description>
<iddf:keys datatype="enum">
<iddf:key>
<iddf:literal>
l-iso-tba

</iddf:literal>
<iddf:label>Aikanã</iddf:label>
</iddf:key>
...

</iddf:keys>
<iddf:notion ref="n2"/>
<iddf:notion ref="n5"/>

</iddf:notion>
<iddf:notion id="n2" name="identification"

scope="tds" type="top">
<iddf:label>
Language identification

</iddf:label>
<iddf:notion id="n3" name="name"

M. Windhouwera, A. Dimitriadisa: Sustainable Operability: Keeping Complex Resources Alive 17

Proceedings of the LREC 2016 Workshop “Translation evaluation – From fragmented tools and data sets
to an integrated ecosystem”, Georg Rehm, Aljoscha Burchardt et al. (eds.)

scope="tds">
<iddf:label>Name</iddf:label>
<iddf:values datatype="free"/>

</iddf:notion>
<iddf:notion id="n4" name="ISO-639-3"

scope="tds" >
<iddf:label>ISO 639-3 code</iddf:label>
<iddf:description

xmlns:xhtml="http://...">
The code as assigned to the
language in the
<xhtml:a href="http://...">
ISO 639-3 standard
</xhtml:a>.

</iddf:description>
<iddf:values datatype="enum">
<iddf:value>
<iddf:literal>tba</iddf:literal>
</iddf:value>
...

</iddf:values>
</iddf:notion>

</iddf:notion>
<iddf:notion id="n5" name="inventory"

scope="pi" type="top"
datatype="UPPC">

<iddf:label>
Phoneme inventory

</iddf:label>
<iddf:notion ref="n6"/>

</iddf:notion>
<iddf:notion id="n6" name="phoneme"

scope="pi" type="root">
<iddf:label>Phoneme</iddf:label>
<iddf:link type="phoneme" rel="as"

href="http://...owl#segment"/>
<iddf:keys datatype="enum">
<iddf:key>
<iddf:literal>p</iddf:literal>

</iddf:key>
<iddf:key>
<iddf:literal>b</iddf:literal>

</iddf:key>
...

</iddf:keys>
<iddf:notion id="n7" name="vowel"

scope="SyllTyp">
<iddf:label>Vowel</iddf:label>
<iddf:description>
Is the segment a vowel?

</iddf:description>
<iddf:link type="concept" rel="as"

href="http://...owl#vowel"/>
<iddf:link type="concept" rel="to"

href="http://...owl#vocalicFeatureNode"/>
<iddf:values datatype="enum">
<iddf:value>
<iddf:literal>+</iddf:literal>
<iddf:description>
The segment is a vowel.
</iddf:description>

</iddf:value>
<iddf:value>
<iddf:literal>-</iddf:literal>
<iddf:description>

The segment is not a vowel.
</iddf:description>

</iddf:value>
</iddf:values>

</iddf:notion>
</iddf:notion>

</iddf:meta>
<iddf:data

xmlns:tds="http://.../ns/iddf/tds"
xmlns:pi="http://.../ns/iddf/pi"
xmlns:SyllTyp="http://.../ns/iddf/SyllTyp"

>
<tds:language iddf:notion="n1"

key="l-iso-tba"
iddf:srcs="SyllTyp UPSID">

<tds:identification iddf:notion="n2"
iddf:srcs="SyllTyp UPSID">

<tds:name iddf:notion="n3"
iddf:srcs="SyllTyp UPSID">
<iddf:value srcs="SyllTyp">
Wari’ (Tubarão)

</iddf:value>
<iddf:value srcs="UPSID">
Huari

</iddf:value>
</tds:name>
<tds:ISO-639-3 iddf:notion="n4"

iddf:srcs="SyllTyp UPSID">
<iddf:value

srcs="SyllTyp UPSID">
tba

</iddf:value>
</tds:ISO-639-3>

</tds:identification>
<pi:inventory iddf:notion="n5"

iddf:srcs="SyllTyp UPSID">
<pi:phoneme iddf:notion="n6" ref="p"

iddf:srcs="SyllTyp UPSID"/>
<pi:phoneme iddf:notion="n6" ref="b"

iddf:srcs="UPSID"/>
...

</pi:inventory>
</tds:language>
...
<pi:phoneme iddf:notion="n6" key="p"

iddf:srcs="SyllTyp UPSID">
<SyllTyp:vowel iddf:notion="n7"

iddf:srcs="SyllTyp">
<iddf:value srcs="SyllTyp">
-
</iddf:value>

</SyllTyp:vowel>
</pi:phoneme>
<pi:phoneme iddf:notion="n6" key="b"

iddf:srcs="SyllTyp UPSID">
<SyllTyp:vowel iddf:notion="n7"

iddf:srcs="SyllTyp">
<iddf:value srcs="SyllTyp">
-
</iddf:value>

</SyllTyp:vowel>
</pi:phoneme>
...

</iddf:data>
</iddf:warehouse>

M. Windhouwera, A. Dimitriadisa: Sustainable Operability: Keeping Complex Resources Alive 18

Proceedings of the LREC 2016 Workshop “Translation evaluation – From fragmented tools and data sets
to an integrated ecosystem”, Georg Rehm, Aljoscha Burchardt et al. (eds.)

